UCL Home

2014 - 2015

RC3 2015

2014 - 2015: Domestic Ecologies

Ruairi Glynn, Christopher Leung, William Bondin

The Interactive Architecture Lab is a multi-disciplinary research cluster interested in the Behaviour and Interaction of Things, Environments and their Inhabitants. Areas of focus include Adaptive Responsive Environments, Kinetic Design and Robotics, Multi-Sensory Interfaces, the Internet of Things, Performance and Choreography, Biological and Material Computation.

Each year’s theme described below is intended to drive early research exploration and the development of core skills. However, the studio actively encourages students to break out and over the course of the year develop their own research agendas.

www.interactivearchitecture.org

Theme 2014-2015 - DOMESTIC ECOLOGIES

“It is now highly feasible to take care of everybody on earth at a higher standard of living than any have ever known. It no longer has to be you or me. Selfishness is unnecessary. War is obsolete. It is a matter of converting the high technology from weaponry to livingry” R. Buckminster Fuller

From wearable technologies, to the Internet of Things, from building managements systems to urban sensory networks, we are seeing the unprecedented saturation of the built environment with computation and embedded sensing. Billions of passive and active devices building dense, rich layers of real time sensor data where even our own clothes may monitor our bio-data to share with the ‘cloud’. These vast datasets, latent with novel applications for consumers and industry alike beg the question – what does a world of hyper-connectivity and high definition sensing offer design? What hybrid ecologies form out of the interaction of natural and digital agency? And how in particular does the saturation of such technologies in the context of the home, augment daily routines, and mediate social interactions?

Key Fields of Reference - ECOLOGY

When Sir Arthur Tansley proposed the term Ecosystem (1935) to describe units of the environment in which a stable dynamic equilibrium exists between (biotic) organisms and their (abiotic) environment, he would not have imagined how such an idea of ecologic balance would capture societies imagination. Today the popular understanding of ecology is synonymous with conservation, environmental and sustainable design. While Ecology has much to offer in understanding and protecting our natural environment, to reduce Ecology to this function alone would be to deny us its many other insights. This year of research focuses on Ecology’s driving principle of Adaptation. So powerful and central an idea of the past century, it transformed the study of natural and social sciences, guided the engineering principles of computing and continues today to offer us a mechanism to mediate between the natural, synthetic and digital. Tansley presented his holistic view of the ecosystem arguing that ecology fundamentally must be conceived as examining a whole system including not only the living organisms (biotic factors) but also the entirety of physical (abiotic factors) which form the habitat. Therefor to design ecologically requires an understanding of whole systems not of parts – of objects, inhabitants and environments all in complex and continual communication and interaction. To do this we will harness the science of control and communication systems, Cybernetics.

Key Fields of Reference - CYBERNETICS

Stafford Beer eloquently described Cybernetics as owing as much to biology as to physics, as much to the study of the brain as to the study of computers, and owing also a great deal to the formal languages of science for providing tools with which the behavior of all these systems can be objectively described. (1966) Its founder, Norbert Wiener had brought together a range of independent lines of scientific development through the principles of cybernetics which he formalized mathematically (1948) - which in turn allowed the synthesis of the ecological principles through mathematical descriptions of biogeochemical cycling, and energy flows. A cross-disciplinary language was formed enabling the science of ecology to share a common language with computational and design thinking. From it came the foundations of robotics, artificial intelligence, networked communication, and modern computing among its many innovations.

Key Fields of Reference – ADAPTIVE & EVOLUTIONARY ARCHITECTURE

Cybernetician Gordon Pask emphasizes in his foreword to Evolutionary Architecture (1995) that John Frazer’s early work in harnessing evolutionary processes through computation, had the goal of not merely copying the work of nature in architectural form, but actually making it alive. Pask goes on to question the role of the architect suggesting he may not only design buildings or cities but also design new ways to catalyze them, to enable their potential to adapt. The Interactive Architecture Lab’s agenda is firmly rooted in this ambition to make our built environment more responsive to human needs and catalytic to social interaction.

COURSE STRUCTURE

Students will receive a series of Lectures from John Frazer that frame a critique of the current state of evolutionary inspired computational design as adaptive in the digital design space, but largely static and unresponsive in the physical realization of the architecture. We will embrace the challenge that for a truly ecological architecture, ecological processes must go beyond the digital design phase and enter into the operation (even life) of built architecture. Coursework will be structured through conceptual stages supported by technical skills workshops in fabrication, programming, digital modelling, mechanics and electronics. We will focus initially on understanding, designing and fabricating passive forms of behaviour, before introducing active and later adaptive behavioural systems. The context of the home and domestic life will be proposed but projects are not constrained to this setting and projects will be negotiated upon their individual merits and ambitions.

TUTORS

Ruairi Glynn

Ruairi Glynn practices as an installation artist and architectural researcher.  He has exhibited his work internationally, most recently at Tate Modern London, the Centre Pompidou Paris, and the National Art Museum Beijing. He is Lecturer in Interactive Architecture at the Bartlett and teaches on both the MArch Graduate Architectural Design (RC3) & MSc Adaptive Architecture and Computation programmes. Study across both his courses is based on a design through making methodology, with an emphasis on using and misusing digital and material technologies. The studio builds and tests at 1:1 scale, experimental objects and interactive installations that uncover new design opportunities to sense and respond to the natural and built environment, to people and other living things, to data local and global. This work is done in collaboration with his Associate Lectureship on the MA Textile Futures programme at Central Saint Martins, University of Arts London.

Christopher Leung

Christopher Leung is an architect with current research interests in how buildings can be designed to adapt to daily and seasonal cycles through variable performance movable building components. His work raises questions about the relationship between machines, occupants and buildings that can be explored through studio-based design projects. His research output and project work has been published in peer-reviewed journal articles together with his collaborations in the sixteen*(makers) group http://www.sixteenmakers.com/. He is the co-author of a number of patent applications for inventions related to passive technologies applied to buildings. His doctoral research investigated the possibilities of novel thermal actuators for exploiting the passive flows of energy around buildings as means to physically modify the performance of a building's envelope. He graduated from the Bartlett’s interactive architecture workshop with an installation exploring the relation between occupation and responsive lighting. 

William Bondin

William is a Maltese architect and creator of Morphs - a reconfigurable interactive architectural system developed under the supervision of Ruairi Glynn. He completed his professional studies in Malta (UoM) and then undertook research at The Bartlett (UCL) graduating with distinction from RC3 Interactive Architecture Lab. His work has been published widely. Inspired by the architectural works of Ron Herron and Buckminster Fuller, and the robotic theories of Rolf Pfiefer and Rodney Brooks, his design practice takes a fabrication-oriented approach towards architectural performance and behaviour.