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Abstract 

This paper presents a new spatial interaction modelling framework for estimating sub-national, 

international migration flows. A new family of models is introduced and exemplified for a sample 

system before issues of parameter calibration and model inputs are discussed using examples from 

Europe. Sub-optimum models are used to explore model assumptions and the accuracy of flow 

predictions across the European system, before we present the results of the optimum model and 

exemplify some important inter-regional flows which emerge from the model predictions. 
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1 Introduction  

Understanding migration is one of the enduring challenges facing geographers and demographers 

worldwide. The challenge persists, thanks to the range of territories and geographical scales of 

interest, the difficulty in dealing with inconsistent definitions of migrants and migration events, the 

variable (and often poor) quality of data and the large and sometimes complex array of tools available. 

Whilst an understanding of migration patterns and processes at the global scale presents possibly the 

largest challenge, in Europe we still know far less about the movements of people within the Union 

than may be expected given the continued desire for knowledge about population change and the 

amount of demographic data made available from member countries. (Poulain et al. 2006). 

Acknowledging this, a number of recent projects have made attempts to address some of the 

limitations of (intra-) European migration data. Against a background of varying migrant definitions, 

inconsistent data relating to the same flows collected for origins and destinations, and incomplete 

matrices, the MIMOSA (Modelling migration and migrant populations) project (Raymer and Abel 

2008) produced a series of inter-country migration estimates for years between 2002 and 2006 

through harmonising available data and using a multiplicative modelling framework to model flows 

between countries. Following on from this, the IMEM (Integrated Modelling of European Migration) 

project (van der Erf et al. - http://www.nidi.nl/Pages/NID/24/842.TGFuZz1FTkc.html) is currently 

looking to improve upon the methodology employed in MIMOSA through a Bayesian statistical 

approach. Further work has also been carried out by Abel (2010) who used a negative binomial 

regression (spatial interaction) model to estimate inter-country flows using a suite of predictor 

variables.  

All of these projects have limited their scope to inter-country flows, but within Europe much of the 

focus of the EU commission is on regional policy (http://ec.europa.eu/regional_policy/ index_en.cfm) 

which is intended to address the quite marked socio-economic disparities which persist between 

smaller zones within the Union. A recent project which had a partial focus on migration at the 

regional (Nomenclature of Territorial Units for Statistics level 2 - NUTS2) level in the EU was the 

DEMIFER project (De Beer et al. 2010). One of the outputs from this project is a set of regional 

population projections for four different growth/cohesion scenarios which include a model of regional 

in- and out-migration based upon annual transition rates (Kupiszewska and Kupiszewski 2010). 

Whilst in- and out-migration rates tell us something about migration at the regional level within 

Europe, they reveal little about the interaction between regions and the hotspots of population 

exchange which occur within the Union helping drive the dynamism and evolution of local population 

structures. Indeed our knowledge of these exchanges across the whole Union is poor. 

Therefore, in this paper we propose a methodology for estimating these inter-regional flows. The 

work builds on previous research which has made use of variations on the entropy maximising spatial 

http://www.nidi.nl/Pages/NID/24/842.TGFuZz1FTkc.html
http://ec.europa.eu/regional_policy/%20index_en.cfm
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interaction models first introduced by Wilson (1970, 1971) and used in migration research (He and 

Pooler 2003; Plane 1982; Stillwell 1978). A new multi-level spatial interaction model is proposed 

which incorporates data at both country and regional levels in Europe to produce estimates of the 

inter- regional inter-country flows consistent with known information at these different levels. 

2 Spatial system and the modelling challenge 

2006 is the year for which the maximum amount of migration data at all levels are available, and so 

we use this as our temporal base. The spatial system of 287 NUTS2 regions nested within 31 

countries (EU 27 + Norway, Iceland and Switzerland – which will be referred to as the ‘EU system’ in 

this paper subsequently) is shown in Figure 1. Migration data for some of the flows occurring are 

available. These data, along with cells representing missing data can be visualised as an 

origin/destination matrix as shown for a sample of countries in Figure 2. The grey cells in Figure 2 

represent inter-regional intra-country (internal migration) migration flow counts which are available 

for most counties in the system. Flows within NUTS2 regions (the white cells on the diagonal) are not 

included in this analysis. The internal migration data were collated for use in the ESPON funded 

DEMIFER project (http://www.espon.eu/main/Menu_Projects/Menu_AppliedResearch/demifer.html), 

although in almost all cases, these data are freely available from the Eurostat statistics database (often 

referred to as ‘New Cronos’ - http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/ 

search_database). Internal migration data for two countries – France and Germany – are not available 

on this database, and were procured separately for DEMIFER from national statistical agencies. It 

should be noted, though, that whilst technically European NUTS2 zones, the French overseas 

departments of Guadeloupe, Martinique, Reunion and French Guiana are not included. The coloured 

cells represent inter-country flows. Consistent estimates of international (intra-Europe) 

origin/destination flows have been created for the 31 countries for our year of interest by Raymer and 

colleagues for the MIMOSA project (Raymer and Abel 2008). gional inter-country flows consistent 

with known information at these different levels.  

Missing data in this EU system matrix are the inter-country, inter-regional flows – for example the 

flows from the three zones in Country 1 to the three zones in Country 3 which sum to the 4,856 

migrants we know flowed between Country 1 and Country 3 in Figure 2. The modelling challenge, 

therefore, is to estimate this missing data in the matrix making use of information available at both the 

country and regional levels. The ultimate goal is to produce a full set of inter-regional estimates which 

make the most use of all available flow information at all levels within the system. Therefore it will be 

necessary to understand the full range of the models which can be built from the elements of the 

migration system. In defining a suite of models, it will become apparent that some are more likely to 

produce better results than others in different data scenarios – the model which produces the best 

http://www.espon.eu/main/Menu_Projects/Menu_AppliedResearch/demifer.html
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/%20search_database
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/%20search_database


3 

 

results in this current data scenario may not be feasible to use where less data exist, and so other less-

optimum models in the family might produce the next best estimates given different data availability. 

 

Figure 1 - The 287 NUTS2 regions of EU 27 + 3 Counties 

One question that arises from this challenge in the current context is whether it is feasible to treat this 

287 zone EU system as a whole when it is the convention to make a distinction between ‘internal 

migration’ flows and ‘international migration’ flows. It could be argued that where national borders 

are real barriers to travel then two systems should be defined, however, in a post-Schengen Europe 

(Convey and Kupiszewski 1995; Kraler et al. 2006) national boundaries are not the rigid constructs 

(both metaphorically and physically) they once were, with flows of migrants between member 

countries now (in principle) as easy as flows within them. Indeed it is not uncommon for another type 

of human flow – daily commutes – to occur between countries such as Denmark and Sweden or 
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Luxembourg and Belgium (Mathä and Wintr 2009). With this being the case, we might expect 

internal migration and international migration in these areas of Europe to be virtually interchangeable 

in terms of, for example, the motivations for moves or the limiting factors such as distance which 

curtail flows. Whether this is actually the case will be explored though the modelling experiments 

with different models in the family detailed later in the paper.  

 

Figure 2 - Example migration data availability within Europe 

3 Modelling methodology 

To achieve the task set out in Section 2 we will make use of a variation on the doubly constrained 

entropy maximising spatial interaction model (Wilson 1970, 1971). Spatial interaction models (SIMs) 

are particularly appropriate in the context of migration where empirical studies and model 

experiments have demonstrated that the propensity to migrate decreases with distance (Boyle et al. 

1998; Flowerdew 2010; Fotheringham et al. 2004; He and Pooler 2003; Singleton et al. 2010; 

Stillwell 1978; Taylor 1983). Indeed, Olsson (1970 p223) notes that “Under the umbrella of spatial 

interaction and distance decay, it has been possible to accommodate most model work in 

transportation, migration, commuting and diffusion”.  

If   is the number of migrant transitions, (Rees 1977), let capital letters such as   and   denote 

countries and let lower case such as   and   denote NUTS2 regions within a country. Then let     be 

the number of migrants from country   to country   in some time period, say   to     (which we will 

leave implicit for ease of notation). Then we can denote by    
  

 the number of migrants from region   

in   to region   in  . For convenience we denote all the migration flows by  , but the different of 

subscripts and superscripts indicate the different geographical levels in the system. This notation 

implies that we number the NUTS2 zones from           for country   rather than numbering them 

consecutively for the whole system. 

The available data described in Figure 2 can then be shown as in Figure 3. We have inter-regional, 

intra-country data for each country -    
  

 where I = J. These internal migration flows could also be 

zone1 zone2 zone3 zone1 zone2 zone3 zone1 zone2 zone3

zone1 0 1131 1887

zone2 1633 0 14055 7211 4856

zone3 2301 20164 0

zone1 0 1608 328

zone2 9885 1252 0 1081 8190

zone3 346 1332 0

zone1 0 630 106

zone2 4992 4773 546 0 569

zone3 112 587 0

Country2

Country3

Country1 Country2 Country3

Country1
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described with the notation    
   to distinguish them from inter-country inter-regional flows. Intra-

regional flows -    
   - are not available. At the country level, inter-country flows     are available. 

 

Figure 3 – Sample system in Figure 2 using defined notation. 

The row and column totals are known for the    
   elements, i.e. at the NUTS2 level, and also for the 

    inter-country levels. Let these be   
  and   

 
 and    and    respectively so that: 

 
  

   ∑   
  

 

 ∑   
  

 

     (1) 

 
  

  ∑   
   

 

 ∑   
  

 

     (2) 

 
   ∑   

 

     (3) 

 
   ∑   

 

     (4) 

These row and column totals are depicted in expanded versions of Figures Figure 2 and Figure 3, 

shown in Figures Figure 4a and b.  Note that the    and    totals do not include intra country data 

contained in the   
  and   

 
 totals – consistent with the common practice of not including intra-

country flows in international migration analysis. Internal migration data are assumed to be consistent 

such that: 

 
∑  

  ∑  
  ∑   

  

    

 (5) 

 

zone1 zone2 zone3 zone1 zone2 zone3 zone1 zone2 zone3

zone1 T1111 T1112 T1113

zone2 T1121 T1122 T1123 T12 T13

zone3 T1131 T1132 T1133

zone1 T2211 T2212 T2213

zone2 T21 T2221 T2222 T2223 T23

zone3 T2231 T2232 T2233

zone1 T3311 T3312 T3313

zone2 T31 T32 T3321 T3322 T3323

zone3 T3331 T3332 T3333

Country2

Country3

Country1 Country2 Country3

Country1
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a) 

 

b) 

Figure 4 - Expanded sample system with margins and sub-margins 

The sample data shown in Figure 4a and b represent the information we currently have about our 

system of interest. The formulation thus far implies that we are not seeking to model flows at the 

NUTS2 level within each country,   (we have these data) and to and from other countries,      . 

The ultimate modelling goal, however, is to estimate these inter-country regional level flows, 

effectively filling all    
  

 interior cells in the matrix.  

In order to model these NUTS2 level flows between countries we introduce another element of 

notation:    
  and    

 
 are, respectively, the out-migration flows from NUTS2   in country   to 

country        and the in-migration flows to NUTS2   in country        from country  .    
  and    

 
 

can be viewed as table sub-margins and are equivalent to   
  and   

 
 (where the country subscripts are 

dropped as flows are internal) so that: 

zone1 zone2 zone3 zone1 zone2 zone3 zone1 zone2 zone3

zone1 0 1131 1887 3018

zone2 1633 0 14055 15688 7211 4856

zone3 2301 20164 0 22465

3934 21295 15942 41171

zone1 0 1608 328 1936

zone2 9885 1252 0 1081 2333 8190

zone3 346 1332 0 1678

1598 2940 1409 5947

zone1 0 630 106 736

zone2 4992 4773 546 0 569 1115

zone3 112 587 0 699

658 1217 675 2550

Country2 18075

Country3 9765

14877 11984 13046

Country1 Country2 Country3

Country1 12067

zone1 zone2 zone3 zone1 zone2 zone3 zone1 zone2 zone3

zone1 T1111 T1112 T1113 M1
1

zone2 T1121 T1122 T1123 M1
2 T12 T13

zone3 T1131 T1132 T1133 M1
3

N1
1 N1

2 N1
3

zone1 T2211 T2212 T2213 M2
1

zone2 T21 T2221 T2222 T2223 M2
2 T23

zone3 T2231 T2232 T2233 M2
3

N2
1 N2

2 N2
3

zone1 T3311 T3312 T3313 M3
1

zone2 T31 T32 T3321 T3322 T3323 M3
2

zone3 T3331 T3332 T3333 M3
3

N3
1 N3

2 N3
3

Country2 O2

Country3 O3

D1 D2 D3

Country1 Country2 Country3

Country1 O1
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   ∑   
  

   

 (6) 

 
   

 
  ∑   

  

   

 (7) 

Then     in (3) and (4), for    , would be given by: 

 
    ∑   

 

   

 ∑   
 

   

 ∑∑   
  

      

 (8) 

These sub-margin elements are shown in Figure 5a and b. In addition to these new sub-margins, two 

new row and column margins can also be calculated.   
  and   

 
 and directly related to    and    in 

that: 

 
  

  ∑   
 

 

 (9) 

 
   ∑  

 

   

 (10) 

 
  

 
 ∑   

 

 

 (11) 

 
   ∑  

 

   

 (12) 

A final set of margins can be calculated for all interior cells in the matrix where: 

 

  
    

    
  (13) 

 
  

    
    

 
 (14) 

With a complete system description, we can then consider the variety of models which can be built. 

Equations (1), (2), (3), (4), (6), (7), (9), (11), (13) and (14) can provide the core constraint equations 

for a suite of entropy maximising models which can be used to estimate various elements and 

aggregations of the    
  

 flows in the multi-level system matrix. We might describe this as a family of 

multi-level spatial interaction models (MLSIMs), with the model possibilities being: 

i. Model the NUTS2 flows within each country separately – that is model    
   (in which case   

simply functions as a label for each country model. Equations (1) and (2) would be the 

accounting/constraint equations. 
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ii. Model the inter-country flows,     separately. Equations (3) and (4) would be the accounting 

equations. 

iii. Model asymmetric NUTS2 flows   and   in and out of each   and      ,    
  and    

 
. Three 

versions of the asymmetric model can be formulated.  

a. Equations (9) and (3) would hold as accounting/constraint equations for Equation (6) 

and Equations (11) and (4) would be the constraints for Equation (7). 

b. Known     flows with Equation (9) would hold as constraints for Equation (6) and 

known     flows with Equation (11) would hold as constraints for Equation 7. 

c. It would also be possible to use Equations (13) and (3) as the constraints for Equation 

(6) and Equations (14) and (4) as the constraints for Equation (7). This model is 

almost identical to a), although in this case we would also be modelling   
  as    

  and 

  
 
 as    

 
. 

iv. Model    
  

 for each country separately using sub-margins (6) and (7) as constraints. 

v. Model    
  

 where     with Equations (9) and (11) as constraints. 

vi. Model the full array of NUTS2 regions,    
  

 using Equations (13) and (14) as the accounting 

constraints.  
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a) 

 

 

 

 

zone1 zone2 zone3 zone1 zone2 zone3 zone1 zone2 zone3

zone1 0 1131 1887 3018 529 356 885 3903

zone2 1633 0 14055 15688 7211 2748 4856 1850 4598 20286

zone3 2301 20164 0 22465 3935 2650 6584 29049

3934 21295 15942 41171 1181 2455 3575 7211 2513 1604 738 4856

zone1 3218 0 1608 328 1936 2666 5884 7820

zone2 9885 3878 1252 0 1081 2333 8190 3213 7091 9424

zone3 2789 346 1332 0 1678 2311 5100 6778

818 3598 5470 9885 1598 2940 1409 5947 4239 2706 1245 8190

zone1 1441 1378 0 630 106 736 2177 3554

zone2 4992 2183 4773 2087 546 0 569 1115 3298 5385

zone3 1368 1308 112 587 0 699 2067 3376

413 1817 2762 4992 782 1625 2366 4773 658 1217 675 2550

1230 5415 8232 2380 4565 3775 4897 3923 1920

5164 26710 24174 3561 7020 7350 7410 5527 2659

Country2 Country3Country1

Country1

Country2

Country3

14877 11984 13046

12067

18075

9765
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b) 

Figure 5 - Sample system including all sub-margin and margin elements 

 

 

zone1 zone2 zone3 zone1 zone2 zone3 zone1 zone2 zone3

zone1 T1111 T1112 T1113 M1
1 T

1
12 T

1
13 O1

1 P1
1

zone2 T1121 T1122 T1123 M1
2 T12 T

1
22 T13 T

1
23 O1

2 P1
2

zone3 T1131 T1132 T1133 M1
3 T

1
32 T

1
33 O1

3 P1
3

N1
1 N1

2 N1
3 T

2
11 T

2
12 T

2
13 T

3
11 T

3
12 T

3
13

zone1 T
2

11 T2211 T2212 T2213 M2
1 T

2
13 O2

1 P2
1

zone2 T21 T
2

21 T2221 T2222 T2223 M2
2 T23 T

2
23 O2

2 P2
2

zone3 T
2

31 T2231 T2232 T2233 M2
3 T

2
33 O2

3 P2
3

T
1
21 T

1
22 T

1
23 N2

1 N2
2 N2

3 T
3
21 T

3
22 T

3
23

zone1 T
3

11 T
3

12 T3311 T3312 T3313 M3
1 O3

1 P3
1

zone2 T31 T
3

21 T32 T
3

22 T3321 T3322 T3323 M3
2 O3

2 P3
2

zone3 T
3

31 T
3

32 T3331 T3332 T3333 M3
3 O3

3 P3
3

T
1
31 T

1
32 T

1
33 T

2
31 T

2
32 T

2
33 N3

1 N3
2 N3

3

D1
1 D1

2 D1
3 D2

1 D2
2 D2

3 D3
1 D3

2 D3
3

Q1
1 Q1

2 Q1
3 Q2

1 Q2
2 Q2

3 Q3
1 Q3

2 Q3
3

Country1

Country2

Country3

Country1 Country2 Country3

D1 D2 D3

O1

O2

O3
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If the accounting equations (1) to (4) are deployed as in Models (i) and (ii), this leads to the 

construction of doubly-constrained models for which the main task would be to identify impedance 

functions, associated generalised costs    , and the model parameter values. In migration research cost 

is often the physical distance between places: the propensity to migrate decreases with distance and 

thus the cost of travel can be inferred to increase. Empirical studies have shown that this distance 

decay in migration propensity will often follow either a negative exponential or inverse power law 

(Stillwell 1978). In spatial interaction models this is represented by a parameter,  , (normally 

negative) which can be calibrated endogenously if data exist. In the equations which follow, we write 

the distance decay function,   ,as exponential -  (   )         - although it would be just as 

appropriate to write it as a power law -  (   )      
 

.  

3.1 Model (i) 

Model (i) is the most straightforward and would produce: 

    
     

   
   

   
       

 

 (15) 

   
  

 

∑   
   

       
 

 

 (16) 

   
  

 

∑   
   

       
 

 

 (17) 

where the generalised distance decay parameter   can be calibrated endogenously using    
   data. An 

alternative version of this model could calculate origin or destination-specific   parameters: 

    
     

   
   

   
    

    
 

 (18) 

    
     

   
   

   
    

    
 

 (19) 

3.2 Model (ii) 

The inter-country, Model (ii), would be: 

                  
 (20) 

where balancing factors are calculated with equivalent equations to (16) and (17). 
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3.3 Model (iii) 

The asymmetric models in Model (iiia) would take the form: 

    
    

     
      

    
 

 (21) 

    
 
     

 
    

 
 
  

 
   
 

 (22) 

With the balancing factors for (21): 

   
  

 

∑        
    

 

 

 (23) 

    
 

∑   
   

    
    

 

 

 (24) 

and the balancing factors for (22): 

    
 

∑   
   

  
 
 
 
 
  
 

 

 (25) 

   
  

 

∑      
 
 
 
 
  
 

 

 (26) 

Equations (21) and (22) can be visualised easily by collapsing the matrices in Figure 5a and b into just 

the relevant margins and sub-margins (Figures 4a and 4b, 5a and 5b). These margins then become, 

effectively, the     values in a standard two-dimensional matrix. 

 

a) 

T
I
iJ Country1 Country2 Country3

zone1 529 356 885

zone2 2748 1850 4598

zone3 3935 2650 6584

zone1 3218 2666 5884

zone2 3878 3213 7091

zone3 2789 2311 5100

zone1 1441 1378 2818

zone2 2183 2087 4270

zone3 1368 1308 2677

14877 11984 13046 39907

12067

18075

9765

Country1

Country2

Country3
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b) 

Figure 6 - Collapsed matrix showing only region-to-country sub-margins depicted in Figure 5 

 

a) 

 

b) 

Figure 7 - Collapsed matrix showing only country-to-region sub-margins depicted in Figure 5 

 

It is important to note that whilst in the examples in Figure 6a and Figure 7a, corresponding country to 

country sums are equal – e.g. ∑    
  ∑    

 
   – as they should be, in model (iiia) the modelled values 

will not correspond in this way, due to the constraints used. To exemplify, consider Figure 8 and 

T
I
iJ Country1 Country2 Country3

zone1 T
1

11 T
1

12 T
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Figure 9. The marginal values in these figures are almost identical to those in Figure 6a and Figure 7a 

(only 2 migrants are misplaced in Figure 8). The interior    
  and    

 
 values are quite different. In these 

modelled matrices, ∑    
  ∑    

 
  . For example the total flows from Country1 to Country 2 in Figure 

8 are 6915, whereas the total flows from Country1 to Country 2 in Figure 9 are 7776. The reason for 

this is that the    
  and    

 
 flows are only constrained to the marginal totals – either   

  and    or    

and   
 
 respectively. In these models,    

  and    
 
 have multiple equilibria, only a small number of 

which result in ∑    
  ∑    

 
  . This has implications for Model (iv) in our suite of models.  

 

Figure 8 -    
  values modelled using the entropy maximising model in (21) 

 

Figure 9 -    
 

 values modelled using the entropy maximising model in (22) 

 

3.4 Model (iv) 

Model (iv) takes    
  and    

 
 as constraints, with the doubly constrained version of the model defined 

as: 

    
  

    
    

 
   

     
 
   

    
 

 (27) 

T
I
iJ Country1 Country2 Country3

zone1 0 682 203 885

zone2 0 2441 2157 4598

zone3 0 3792 2792 6584

zone1 2940 0 2944 5884

zone2 4461 0 2630 7091

zone3 2780 0 2320 5100

zone1 1173 1645 0 2818

zone2 2086 2184 0 4270

zone3 1437 1240 0 2677

14877 11984 13046 39907

Country3 9765

Country1 12066

Country2 18076

TJIj zone1 zone2 zone3 zone1 zone2 zone3 zone1 zone2 zone3

Country1 0 0 0 760 2968 4048 910 2459 922 12067

Country2 610 3820 4890 0 0 0 5842 1851 1062 18075

Country3 620 1595 3342 1203 1112 1893 0 0 0 9765

1230 5415 8232 1963 4080 5941 6752 4310 1984 39907

14877 11984 13046

Country1 Country2 Country3
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 (28) 

With the balancing factors for (27): 

    
  

 

∑    
 
   

 
   

    
 

   

 (29) 

    
 
 

 

∑    
    

    
    

 

   

 (30) 

 

If ∑    
  ∑    

 
   then it is possible to solve Equations (27) and (28) – the iterative procedure which 

calculates the    
  and    

 
 balancing factors is able to converge when ∑    

 
  and its corresponding sub-

margin ∑    
 

  are the same value. If    
  and    

 
 values are estimated using the entropy maximising 

procedure described in Equations (21) and (22), then ∑    
  ∑    

 
  , meaning that the iterative 

balancing factor routine will not converge and Equations (27) and (28) cannot be solved.  

One solution to this issue is to estimate    
  and    

 
 using a method other than the entropy maximising 

model described. As already noted,    
  and    

 
 are equivalent to   

  and   
 
. In this system we already 

know the values of   
  and   

 
 from the    

   internal migration data available. Given this information 

the following equations can be used to estimate    
  and    

 
: 

    
  (

  
 

   )    (31) 

    
  (

  
 

   
)    (32) 

 

Where these    
  and    

 
 estimates are constrained to the corresponding     values, ∑    

  ∑    
 

   and 

thus it is possible to solve Equations (27) and (28). 

There is, however, an entropy maximising solution to this issue as well. In Model (iiib) the constraints 

used to estimate    
  and    

 
 are not the matrix margins as shown in Figure 6 and Figure 7. By using 

these margins in (iiia) we are not taking advantage of all known information in the system. As     

flows are known, a combination of matrix margins and known interior     values can be used as 

constraints, thus the equations for    
  and    

 
 become: 



16 

 

    
    

      
       

    
 

 (33) 

    
 
      

 
     

 
 
  

 
   
 

 (34) 

with the balancing factors for (33) calculated: 

   
  

 

∑          
    

 

 

 (35) 

     
 

∑   
   

    
    

 

 

 (36) 

and the balancing factors for (34): 

     
 

∑   
   

  
  

 
   
 

 

 (37) 

   
  

 

∑        
 
 
 
 
  
 

 

 (38) 

 

In constraining    
  and    

 
 to     flows, ∑    

  ∑    
 

  . This means that when Equations (33) and 

(34) are used as inputs into (27) and (28) in model (iv), the balancing factors will always converge 

and the equations can be solved. Model (iv) represents the    
  

 estimates which will adhere most 

closely to the known information about the system, and as such might be described as the optimum 

model for the EU system in this study.  

3.5 Model (v) 

If Model (iv) is the optimum model, then Models (v) and (vi) which produce alternative    
  

 estimates 

using less information might be described as being suboptimal. Model (v) will only produce    
  

 

estimates where        . This model can be written: 

    
     

   
   

   
    

    
 

 (39) 

where: 

   
  

 

∑   
   

    
    

 

 

 (40) 
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∑   
   

    
    

 

 

 (41) 

In this model,   
  and   

 
 can be estimated in exactly the same way as    

  and    
 
 in Equations (31) 

and (32), so: 

   
  (

  
 

   )   (42) 

   
  (

  
 

   
)   (43) 

The    
  

 estimates in model (v) will not adhere as closely to known     values as those in Model (iv), 

as the constraints are the outer margins on the expanded matrix shown in Figure 5.  

3.6 Model (vi) 

Finally, Model (vi) models the whole    
  

 matrix, including    
   flows. This model (with an origin-

specific distance decay parameter) takes the form: 

    
     

   
   

   
    

    
 

 (44) 

where: 

   
  

 

∑   
 
  

 
   

    
 

 

 (45) 

   
  

 

∑   
   

    
    

 

 

 (46) 

with the   
  and   

 
 constraints calculated as in Equations (13) and (14).  

This new family of doubly constrained multi-level spatial interaction models allows estimates of a full 

matrix of 287 x 287 flows within the defined European system to be made. Whilst Model (iv) defined 

in Equations (33) and (34) will produce estimates which are forced to adhere most closely to the 

known information in the system, other models in the family, which by definition will produce results 

constrained to less information, will allow us to examine features of the European migration system 

which do not fit our model assumptions.  In doing this we might, for example, be able to identify 

areas where it would be prudent to adjust the cost proxy in order to distribute migrant flows more 

effectively within the system without the ‘helping hand’ that constraints give, or indeed answer the 

question posed in the introduction to this paper relating to whether it is feasible to treat the European 

system as, effectively, an internal migration system where national boundaries have little influence on 
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migration flows. First, however, a number of technical challenges relating to the implementation of 

the models need to be overcome.  

4 Model parameter calibration 

All of the models described in the MLSIM family make use of a calibrated distance decay parameter 

(or parameters), but in making use of such a parameter, a number of problems present themselves. 

Firstly, calibration can only be carried out using known data within the system – therefore the   

parameter(s) will have to be calibrated using either    
   flows of     flows. This means that, 

potentially, these parameters may not be completely appropriate for    
  

flows. In the absence of other 

means of estimating appropriate parameters, however, it could be argued this is the best option 

available at this time, and so it is the option we will have to take.  

Accepting that available observed data will be used to calibrate the best-fit parameter(s), the next 

issue relates to the method used to carry out the calculation. Distance decay parameters in spatial 

interaction models have historically been calibrated using maximum likelihood techniques employed 

in computer algorithms – these commonly use iterative procedures to search for the ‘best-fit’ between 

the estimates created by the model and the sample data. As an aside, whilst standard iterative 

procedures are most frequently used in this type of modelling, it should be noted that a significant 

amount of work has been carried out by Openshaw and colleagues on the calibration of spatial 

interaction models using genetic algorithms (Diplock and Openshaw 1996; Openshaw 1998); an 

approach perhaps operationalised most recently by Harland (2008) – we will not explore these 

methods here, but will use a conventional iterative approach. Batty and Mackie (1972) discuss a range 

of maximum likelihood calibration methods, but the Newton-Raphson search algorithm has been 

shown to perform better than most and has been adopted in both the SIMODEL computer program 

developed by Williams and Fotheringham (1984) and the IMP program developed by Stillwell (1978); 

both Fortran programs using the search routine to find the parameter estimates which minimise the 

divergence between the mean value of the total distance travelled in the observed and modelled flow 

matrices – an approach also used by Pooler (1994). Thanks to its successful implementation in SIMs 

for migration analysis, the Newton-Raphson algorithm is the one that we choose to use here.  

Initially two versions of the doubly constrained model were run to calibrate a best-fit general distance 

decay   parameter for the whole system. The results of these models are shown in Table 1 and are 

contrasted with a more basic singly constrained model for comparison. Here a selection of goodness-

of-fit (GOF) statistics are displayed – the coefficient of determination (R
2
), the square root of the 

mean squared error (SRMSE), the sum of the squared deviations and the percentage of misallocated 

flows – although they all display very similar findings. It is clear that the doubly constrained model 

with the inverse power function applied to the distance matrix produces the best fit to the original 
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data, with an R
2
 of some 87%. This compares to an R

2 
of 72% for the negative exponential function 

and 62% for the reference production constrained model.  

Table 1 - Goodness-of-fit statistics for    
   model experiments 

Model equation   R
2
 SRMSE Sum Sq Dev % Misallocated 

   
     

   
 
  

   
 
     

 

 
-4.2986 0.718 39.393 10,456,839,051 21.554 

   
     

   
 
  

   
 
   
 

 -0.9136 0.865 27.992 5,280,098,085 17.008 

   
     

   
    

 
 -1.2201 0.623 45.457 13,886,764,628 28.131 

 

The question that follows is: should this overall distance decay parameter be used as the distance 

decay input to the estimation model? If this parameter is representative of the whole system, then it 

could be argued that it could. To test this, a    
   model with an inverse power distance decay function 

(akin to that in the second row of Table 1) was run separately for each of the 21 countries in the 

system comprised of more than a single zone in order to calibrate a series of    parameters. The 

results of these experiments are shown in Table 2.  

In this instance we chose the inverse power distance decay function as it was the best performing 

function in the    
   experiment. Serendipitously, the power function is scale independent whereas the 

exponential function is not (Fotheringham and O'Kelly 1989), meaning we are able to directly 

compare the    parameters directly. In Table 2 we use the R
2
 value as our measure of goodness-of-fit. 

We are aware that there has been some debate over which is the most appropriate metric to use 

(Knudsen and Fotheringham 1986), however R
2
 is commonly used and for comparative proposes the 

choice of statistic has little relevance to the outcome. A number of points can be made about the 

results displayed in Table 2. Firstly the countries are ranked according to their goodness-of-fit and we 

can observe that around half of the list have R
2
 values over 90%, with Finland, Sweden and Austria 

ranked the highest – Finland with an exceptionally high R
2
. It is clear, however, there is considerable 

variation in the    parameters for each country. This would suggest that it may not be ideal to use the 

generalised   parameter to model flows for the whole EU system. Furthermore, the reliability of some 

of the    parameters can be called into question with particularly low R
2
 values for Spain and France 

– countries which exhibit positive    parameter values. The exact way in which these parameters can 

be understood has been questioned (Fotheringham 1981), however one interpretation is that the value 

can be read behaviourally and the number is an index of the deterrent to migration, with high negative 

values representing distance being a strong deterrent to migration and low negative values inferring 

that distance is a weak deterrent. Positive values in this context would indicate that distance is an 
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attraction to interaction – i.e. the further away origins and destinations, the more likely migration is to 

occur. Clearly this is unlikely to be the case across the whole of Spain and France. 

Table 2 – Goodness-of-fit statistics for inter-regional migration data modelled with a doubly 

constrained model with a power distance decay   parameter 

Country Code Country R2    (power function) 

FI Finland 0.996 -0.754 

SE Sweden 0.974 -0.771 

AT Austria 0.972 -0.747 

HU Hungary 0.963 -0.567 

SK Slovakia 0.948 -0.773 

NL Netherlands 0.936 -1.279 

DK Denmark 0.930 -0.969 

NO Norway 0.919 -0.814 

BG Bulgaria 0.901 -0.825 

CZ Czech Republic 0.889 -0.807 

UK United Kingdom 0.884 -0.927 

PL Poland 0.877 -1.068 

CH Switzerland 0.788 -0.867 

BE Belgium 0.772 -1.049 

RO Romania 0.745 -0.763 

DE Germany 0.715 -0.760 

IT Italy 0.699 -0.718 

ES Spain 0.621 0.154 

FR France 0.549 1.093 

 

Given this evidence, generalised distance decay parameters are currently poor candidates for inputs 

into an estimation model for the whole of Europe. A potential solution, therefore, would be to use 

distance decay parameters which are specific to each NUTS2 zone - a technique first outlined by 

Stillwell (1978). This returns us to Model (i) and Equations (18) and (19).  

The GOF statistics for Model (i) – taken for all internal migration flows in the system rather than for 

each separate country) – are shown in Table 3. Evidently these models provide much better fits than 

the generalised parameter models, with R
2
 values around 93%. A geography to these distance decay 

parameters can be observed, with the frictional effects of distance operating very differently for in- 

and out-migration flows across the EU system, as is shown in Figures Figure 10 and Figure 11. It 

should be noted that the nature of the algorithm used to carry out this calibration means that where it 

is not possible to calculate a zone-specific distance decay parameter (for example in those countries 

where    
   data do not exist such as Greece), a generalised distance decay parameter which is 
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calculated for the whole system prior to zone specific calibration is allocated. Given the results of 

these experiments it is these origin and destination specific parameters calibrated on internal 

migration data which will be used as distance decay inputs into our later estimation models.  

Table 3 - Goodness-of-fit statistics for Model (i) with   
  and   

 
 parameters 

Model equation R
2
 SRMSE Sum Sq Dev % 

Misallocated 

   
     

   
 
  

   
 
   

    
 

 
0.928 19.802 2,642,462,153 12.284 

   
     

   
 
  

   
 
 
  

 
   
 

 
0.931 19.582 2,583,959,209 12.163 

 

 

Figure 10 -   
  values calibrated on inter-regional, intra-country migration data, 2006 
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Figure 11 -   
 
 values calibrated on inter-regional, intra-country migration data, 2006 

5 Model experiments 

5.1 Estimating margin constraints 

The sub-section of the MLSIM family of models outlined in Section 3 which used to estimate    
  

 

flows, all require some inputs which are not available directly from the data to hand. In addition to the 

distance decay parameters that will be calibrated only on internal migration data, Models (iiia), (iiib), 

(iv) (v) and (vi) make use (directly and indirectly) of   
  and   

 
 margins. Consequently sub-models 

are required to make estimates of these data. Where ∑   
 

        and ∑   
 

       , it follows that 

it should be feasible to estimate the NUTS2 level   
  and   

 
 margins from the country level    and 

   margins, given the appropriate ratio values. But which are the appropriate ratios to use? 
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As information at the internal migration    
   level is complete, it might be possible to use the 

distribution of internal migrants to estimate the distribution of international migrants such that: 

 
  

   (
  

 

  
)   (47) 

 

 

  
 
  (

  
 

   
)   (48) 

 

Source: Eurostat, Table cens_ramigr 

Figure 12 – Correlation between internal (‘Place of residence changed outside the NUTS3 area’) and 

international (‘Place of residence changed from outside the declaring country’) migrant distributions 

for NUTS2 regions, selected EU countries, 2001  

The assumption here is that the distribution of internal in- and out-migrants within countries is the 

same as the distribution of immigrants and emigrants moving between countries. But can internal 
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migrant distributions be used to estimate distributions of international migrants within countries 

accurately? We might expect, for example, capital cities to dominate these distributions with larger 

urban areas also providing significant origins and destinations at both levels. Is this the case in reality? 

Figure 12 shows the comparable distributions of internal and international migration for a selection of 

European countries at NUTS2 level (all countries where comparable data exists at this level), taken 

from Census data from the 2000-01 census round and compiled by Eurostat. Broadly speaking there 

are positive correlations between internal and international migration distributions, although there are 

some noticeable differences in the correlation coefficients denoted by the R
2
 values (and the scatter 

plots). For most countries in the selection, R
2
 values are over 80%, indicating that internal migration 

distributions are reasonably good predictors of international migration distributions. For some 

countries, though, this predictive relationship is weak. Poland, for example, has an R
2
 value of only 

17%, with the Czech Republic (23%) and Switzerland (28%) not faring much better. The reasons for 

the lack of correlation in these countries are difficult to ascribe, but differences in the perceived 

attractiveness of particular destinations to internal and international migrants will affect the 

correlations. Studying Figure 12, the scatter plots show that there is very little pattern in the 

association between internal in-migration and immigration in Poland, although examining Switzerland 

and the Czech Republic, it appears that were it not for one or two outliers in the scatter plots, the 

correlation would be far stronger. Through mapping the differences between internal and international 

migrant distributions it is possible to interrogate these and other outliers a little further.  

Figure 13 maps the distribution of the differences between the regional shares of internal and 

international (in-)migration across NUTS2 zones in Europe (where data are available). A number of 

points should be made about this map. Firstly, all yellow zones signify less than a 1% deviation 

between the distribution of internal and international migrants – these zones include much of the UK, 

and large parts of France, Italy, the Czech Republic, Poland and Greece. In these areas internal 

migration distributions can be seen to be good predictors of international migration distributions. 

Secondly, zones in light orange and light green show only up to a 3% deviation – these include most 

of the rest of France, a number of regions in Scandinavia, the Netherlands, Poland, the UK, Italy and 

Greece. Perhaps the most important point of note, however, which becomes very apparent when 

examining Figure 13, is that there appears to be a ‘capital city effect’. The regions containing London, 

Paris, Madrid, Rome, Amsterdam, Stockholm, Helsinki, Prague, Lisbon and Dublin all exhibit a 

noticeably higher (average 8.7%) proportion of the national share of international immigrants 

compared to the national share of internal in-migrants. Some capital cities go against this pattern, 

although Bern can probably be discounted as in terms of city status, Zurich (which matches this trend) 

could be argued to be a city of more importance within Switzerland. Oslo, Athens and Budapest have 

lower proportions of international immigrants than internal in-migrants, but the city region where a 

very large trend in the opposite direct occurs is Warsaw in Poland. Here the proportion of internal 
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migrants to Warsaw is over 18% higher than the proportion of international migrants. That Warsaw is 

an attractive destination for internal migrants would not be surprising, but why it accounts for a much 

larger proportion of these migrants compared to international migrants is unclear without further 

investigation of the particular motivations of migrants in Poland.  

 

Figure 13 – Distribution of NUTS 2 regions where shares of internal and international in-migrants 

differ, selected EU countries, 2001 

Based on this it could be argued that if this capital city effect could be accounted for consistently, and 

the proportions of migrants associated with other regions in the country adjusted accordingly, then 

internal migration distributions could be used to make international migration   
 
 margin estimates 

relatively reliably, assuming that these associations hold over time.  
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Incidentally, the time dimension provides us with another option for modelling the sub-national 

distributions of international migrants. Where decennial census (or other periodic) data can provide 

sub-national immigrant distributions, if country level immigrant data are available, sub-national 

distributions can be estimated with the formula: 

 

  
    

  (
  

  

   )      (49) 

Even if more up-to-date national data are not available, an assumption could be made that these ratios 

hold over time so that: 

 

  
    

  (
  

  

   )    (50) 

Returning to Equations (47) and (48), unfortunately the nature of the data collated by Eurostat means 

that it is not possible to assess whether emigrant distributions also follow the distributions of internal 

out-migrants (these data are census/population register data relating to resident populations in 

recording countries and therefore cannot contain emigrant data). Given the high degree of association 

between internal migration in- and out-migration distributions (Figure 14) it might be reasonable to 

use international immigrant distributions to estimate international emigrant distributions, but the 

capital city effect would need to be explored before this could be done with confidence. Here our 

concern is to present a general methodology for estimating the full EU matrix of NUTS2 flows and so 

we will not dwell on this element of the estimation process at this stage, although it should be stressed 

that the estimation of   
  and   

 
 marginal values will have an important bearing on reliability of the 

final modelled outputs.  

As a consequence of the data to hand and the investigations of internal/international migration 

associations, at this stage internal migration distributions will be used to estimate   
  and   

 
 marginal 

values for the model as in Equations (47) and (48), but we recognise that this is an area of the 

methodology which could be improved in the future.  
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Figure 14 – Correlation between the NUTS2 regional share of internal in- and out-migration flows 

across EU countries, 2006 

5.2 Suboptimal models for exploring the EU system 

5.2.1 Examining internal migration flows 

Once   
  and   

 
 margins have been estimated and an initial calibration routine has been run using 

Model (i) to calibrate   
  and   

 
values from    

   data, it is possible to use these data as inputs into 

Models (iiia), (iiib), (iv) (v) and (vi). Model (iv), takes in    
  and    

 
 inputs from Model (iiib) and (as 

previously described) can be viewed as the optimum model as any outputs will be constrained to 

known     flows and estimated   
  and   

 
 margins (where    

  and    
 
 estimates used these 

constraints). Models (v) and (vi), in contrast, are suboptimal as estimates will not be constrained to 

    flows, only   
  and   

 
, or   

  and   
 
 margins. Running suboptimal models is an important part of 

the model building process as they allow us to explore the reliability of some of the general model 

assumptions. All of the models in the multi-level family use distance as the proxy for estimating 

flows, with the constraints acting to force these estimates to conform to known information about the 

system. Where suboptimal constraints mean the distance proxy has more influence on the final model 

results, we are able to examine, through comparing model outputs with other data, where in Europe 

distance (and the decay assumptions developed from internal migration data) is a less successful 

proxy for estimating migration flows.  
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Model (v) can be run using both   
  (origin specific) and   

 
 (destination specific) parameters – the 

former taking the form of Equation (39), the latter being written: 

 
   

     
   

   
   

    
 
   
 

 (51) 

with balancing factors equivalent to Equations (40) and (41) 

 

Similarly, model (vi) can be run as in Equation (44) with origin and destination specific parameters, 

with the destination specific version taking the form: 

 
   

  
   

   
 
  

   
 
 
  

 
   
 

 (52) 

 

With Model (vi) estimating all    
  

 cells from   
  and   

 
 margins, the estimates from this model differ 

noticeably from those from Model (v) where    
   internal migration flows are estimated 

separately, as in Model (i), before being added to    
  

 flow estimates which are constrained to   
  

and   
 
 margins. As may be expected, in Model (vi), where the    

  
 estimates are the internal 

migration    
   flows within countries, the estimates are inaccurate as there are no constraints operating 

at the intra-country level. To exemplify this, consider Table 4.  

Table 4 compares the modelled internal migration flows for Austria (Model vi) with the observed 

values taken from the Eurostat database. The negative values in this table indicate that the modelled 

internal migration flows in all cases are significant underestimates (and it is a similar story when 

destination specific   
 
 parameters are used – table not shown). These Model (vi) residuals can be 

contrasted with the Model (i/v) residuals for the same cells where internal migration constraints are 

applied (Table 5). The constraints in this case mean that all residuals sum to 0 across both origins and 

destinations leading to a much lower overall absolute error across all estimates (16,825 migrants in 

the    
   table vs. 75,808 migrants in the    

  
 table). The same    

  
 underestimation is present for most 

origin/destination flows in all EU countries, as demonstrated in Table 6. Here it is shown that in most 

cases the underestimate of the model can be measured in the thousands.  

These underestimates of internal migration flows in Model (vi) mean that far too many flows are 

being distributed internationally. This indicates that the country border effect is far stronger than the 

model accounts for, even when origin and destination specific distance decay parameters have been 

calibrated, suggesting that in reality, despite the theoretically free movement of people in the post-

Schengen Europe, country effects cannot be over-stated. An interesting avenue of future research 

would be to see whether or not these effects are truly ‘country effects’ or whether other factors such 

as language play an equally important role. To analyse this, sub-sections of the full interaction matrix 

could be modelled analysed for countries which share common or similar languages – e.g. France and 
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Belgium, Belgium and The Netherlands, Austria and Germany, France and Switzerland, Switzerland 

and Germany, etcetera.  

Table 4 – Observed vs. modelled    
  

 residuals – Model (vi) 

  

Destination 

 

  

AT11 AT12 AT13 AT21 AT22 AT31 AT32 AT33 AT34 Oi 

Origin 

AT11   -848 -1489 -49 -660 -64 -13 -35 -17 -3176 

AT12 -1457 

 

-12119 -339 -1022 -1659 -303 -264 -150 -17313 

AT13 -1905 -16571 

 

-972 -1472 -1698 -628 -621 -395 -24262 

AT21 -53 -224 -1458 

 

-1413 -249 -219 -443 -110 -4168 

AT22 -700 -815 -2707 -1175 

 

-986 -562 -403 -257 --7605 

AT31 -124 -1378 -3039 -238 -1035 

 

-1858 -769 -266 -8706 

AT32 -14 -135 -1164 -120 -620 -1722 

 

-565 -99 -4438 

AT33 -77 -364 -925 -461 -634 -534 -496 

 

-552 -4043 

AT34 -30 -110 -626 -148 -319 -190 -105 -569   -2098 

 

Dj -4358 -20446 -23527 -3502 -7175 -7102 -4183 -3669 -1846  

Sum absolute error = 75808.37 

Table 5 – Observed vs. modelled    
   residuals – Model (i/v) 

  

Destination 

 

  

AT11 AT12 AT13 AT21 AT22 AT31 AT32 AT33 AT34 Oi 

Origin 

AT11 

 

-265 462 27 -397 89 48 26 9 0 

AT12 -681 

 

676 60 146 -501 100 159 40 0 

AT13 499 -1614 0 -204 800 319 116 143 -58 0 

AT21 106 294 -441 

 

-407 285 301 -126 -12 0 

AT22 -235 731 217 -505 

 

-23 -77 -11 -98 0 

AT31 175 400 187 288 247 

 

-588 -237 -99 0 

AT32 78 258 -416 467 8 -267 

 

-120 -8 0 

AT33 31 79 -118 -105 -240 70 59 

 

224 0 

AT34 28 117 -194 -29 -156 28 40 165   0 

 

Dj 0 0 0 0 0 0 0 0 0  

Sum absolute error = 16825.34 

It could be that two different distance decay parameters are required for internal and international 

migration flows. If this is the case, then despite the extra constraints forcing the results in Model (i/v) 

to conform to the known data more closely, the international estimates may still suffer from some 

inaccuracy. The problem faced, despite acknowledging this issue, is that with a dearth of inter-

regional international migration data to call upon, it is very difficult to validate these model estimates 

effectively.  
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Table 6 - Average total error for internal migration Model (vi)    
  

 estimated flows for EU countries, 

2006 

 

Average error 

 

Average error 

Country   
 

   
 

 Country   
 

   
 

 

AT -1053 -1009 HU -3302 -3268 

BE -922 -937 IT -671 -670 

BG -1375 -1445 NL -1408 -1456 

CH -1055 -1211 NO -1783 -1840 

CZ -1130 -1199 PL -88 -128 

DE -393 -382 RO -673 -852 

DK -4134 -3692 SE -2555 -2606 

ES -871 -938 SI -2022 -2021 

FI -3526 -3599 SK -1179 -1087 

FR -1652 -1632 UK -410 -402 

 

5.2.2 Examining inter-regional, inter-country flows 

Suboptimal models also provide a useful contrast with the inter-regional inter-country estimates from 

the optimal constrained MLSIMs derived from Model (iv) (where known     flows constrain the 

inter-regional estimates). For example, consider the two maps which show the outputs from the 

suboptimum Model (v) and optimum Model (iv) in Figure 15 and Figure 16. Both maps use the same 

scale for display, showing all large (750 migrants and above) origin/destination flows between 

NUTS2 regions located in different countries in the system. Immediately noticeable is the very large 

difference in the volume of flows displayed in each map. The suboptimal model has far fewer large 

flows, while the optimal model has many more. What this indicates is that the suboptimum model 

distributes the migrants far more evenly around the system than the optimum model, which 

concentrates regional flows in accordance with country level flows estimated by the MIMOSA 

project. Where the disparities between the two models are most obvious can be seen when regional 

flows are aggregated to the country level – this is shown in Table 8.  

Table 7 shows the differences between the aggregated estimates from the MLSIM suboptimal   
  

Model (v) and the MIMOSA model. Where entries in the table are shaded grey, the estimates depart 

by greater than or less than 2000 migrants. When examining these residuals it is worth bearing in 

mind that in a closed system such as this, where large over or under estimates occur in a row or 

column, this will affect other estimates in the same row or column. For example, this can be seen in 

the destination column for Germany (DE) in Table 7. Here the MLSIM very much under-estimates 

the number of migrants flowing from Poland into Germany when compared to the MIMOSA estimate 
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– some 47,842 migrants fewer. This large under-estimate has the effect of influencing over-estimates 

elsewhere in the column.  

From Table 7 a handful of countries appear for which the two models disagree. Flows out of 

Germany, Poland and Romania exhibit a relatively high level of disagreement, as do flows into 

Germany and Spain. Individual flows which draw particular attention are those from Poland into 

Germany and vice versa (MLSIM under-estimates compared to MIMOSA on both counts), Romania 

into Spain and into Italy, as well as Bulgaria into Spain, UK into Spain and Germany into Austria 

(MLSIM under-estimates). Romania into Bulgaria, France into Spain, Romania into UK and Germany 

into UK show noticeable over-estimates for MLSIM.  

 

Figure 15 - Largest flows from suboptimal Model (v) with   
  parameters 
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Figure 16 - Largest flows from optimum Model (iv) with   
  parameters 

In cases where we have these large disagreements, it is where large flow volumes occur between 

countries not in close geographical proximity. For example, as shown in Figure 16 and Table 7, very 

large flow volumes occur between regions in Romania and Spain and Poland and Ireland in the 

MIMOSA model – where these countries are not close, the suboptimal MLSIM distributes the flows 

far closer to the origins. Similarly, relatively low flow volumes are shown between France and Spain 

in the MIMOSA data – something which runs counter to the short distances (and associated distance 

decay assumptions) and the large total in and out flows from these countries used to predict flows in 

the suboptimal MLSIM.  
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Table 7 - Comparison of absolute flow estimates from Model (v)   
 and MIMOSA models 

 

Positive values = MLSIM model estimate higher 

Negative values = MIMOSA model estimate higher 

 

Orig/Dest AT BE BG CH CY CZ DE DK EE ES FI FR GR HU IE IS IT LI LT LU LV MT NL NO PL PT RO SE SI SK UK

AT 0 189 -1167 -36 91 717 -2298 33 -12 2790 77 1013 -82 -2531 366 29 3823 -121 45 101 14 23 -101 174 590 -90 -3963 183 -561 -371 1069

BE 20 0 -32 660 16 75 6916 -149 -1 -225 -129 -4543 -91 -27 381 18 -916 -2 -68 -1192 -56 -4 -2534 53 -450 -19 34 -116 -88 -126 2599

BG -612 168 0 807 40 -1226 -1682 185 38 -10539 257 706 2929 448 590 71 -11 0 64 97 62 45 -56 278 2264 299 5041 475 85 -878 57

CH 191 723 -3 0 84 283 5201 -438 11 -127 -212 -2175 52 89 453 44 -1218 365 -2 320 -13 11 -608 50 689 -65 350 -307 -332 -864 -2563

CY 170 78 -1266 232 0 72 1055 68 2 1842 92 438 -2407 -79 222 40 944 0 20 26 18 -18 69 118 534 155 -683 129 -4 113 -1980

CZ 1360 191 -4836 862 92 0 3466 165 30 3921 228 412 156 365 624 81 2339 1 55 153 32 18 6 305 4672 276 -967 513 79 -13249 -1356

DE -10015 13325 -4160 8249 247 9374 0 3355 -102 9693 321 11655 -9217 -8921 4086 178 7057 -54 -612 3849 -308 48 11509 1057 -52765 -3372 -10615 1784 -642 -1598 16603

DK 81 125 -5 26 17 156 4416 0 -51 478 -225 21 -17 -53 280 -1136 464 -4 -82 -7 -108 -13 178 -1441 1202 7 133 -4727 5 -114 395

EE 77 71 41 161 26 61 547 -55 0 965 -3003 283 107 34 175 11 388 0 9 8 -210 2 22 -39 616 84 198 -157 10 77 -512

ES 1049 -3519 -2430 -6658 602 861 4778 -423 81 0 73 -1882 1358 268 1369 381 9299 -95 -555 351 89 144 -1610 578 3536 689 -9802 410 85 723 267

FI -160 -39 64 -77 61 36 7 -182 -687 1034 0 266 128 10 113 23 472 0 5 21 -71 -3 -170 -167 779 131 310 -2551 10 57 579

FR 340 -5193 -278 212 223 161 2813 -543 -18 12244 60 0 -166 -208 1427 189 3044 -10 -12 -4253 -26 -73 -1283 362 -901 -3282 -190 52 -43 -696 -3930

GR 41 98 -31 495 -2627 129 -4318 0 20 3688 132 457 1378 121 515 78 1840 -1 38 49 35 18 -928 194 164 295 435 -218 38 134 -2266

HU -2119 13 216 750 60 677 -9721 57 25 3168 169 -338 526 0 400 61 3068 0 105 101 53 27 -232 230 4069 170 -213 77 138 -767 -773

IE 130 -557 -28 -141 53 67 1519 14 -4 2757 51 -822 68 30 0 119 933 -3 -1604 6 -306 -8 -87 269 -1257 210 81 126 20 53 -1684

IS 11 39 17 69 21 22 294 -1165 -6 542 -33 173 47 17 174 0 193 0 -14 12 -7 0 -7 -178 11 32 71 -383 -1 4 47

IT -131 -1914 357 -14077 642 354 -4029 -9 118 9909 637 -1331 1099 301 2279 390 2 -21 -34 -8 22 -67 -782 982 100 1185 627 977 -295 -502 3234

LI -41 1 0 -5 1 2 -3 -5 0 20 1 -16 1 0 3 1 13 0 0 1 0 0 2 1 -4 1 2 4 0 -5 25

LT 108 127 26 429 103 139 -1063 -752 14 839 252 632 266 153 -2273 -99 898 0 0 64 -685 11 -14 -734 1635 111 624 -211 29 253 -879

LU 80 -1924 35 163 38 97 338 -20 -1 1377 10 -1703 86 32 238 7 453 0 -4 0 5 6 100 99 411 -860 159 80 -6 92 613

LV 81 47 57 45 -18 72 -401 -265 -494 1006 94 -295 114 36 -769 -17 373 -11 -276 7 0 -2 0 -64 778 79 255 -23 13 65 -486

MT 13 -15 6 33 0 10 85 -13 -2 340 9 -176 40 4 3 5 75 0 4 5 -3 0 -58 9 75 19 42 1 -7 -10 -494

NL -441 -7083 -41 -351 12 -108 9747 -34 -20 -626 -137 -659 -481 -257 394 17 712 -1 -42 412 -50 -17 0 -300 -840 -789 109 -681 -29 -302 1893

NO 152 126 43 230 74 113 1606 -1913 -22 913 -428 555 147 70 573 -259 828 0 -184 54 -35 -6 -193 0 383 147 279 -3498 15 -183 412

PL 8550 -2264 1653 5037 192 12671 -47842 2679 804 9215 2743 -721 184 7074 -21310 -937 6739 -20 5249 924 1554 113 -3781 -2347 0 880 13429 4126 727 18620 -24060

PT 20 140 87 484 146 167 -1293 24 23 1866 152 -3273 361 124 977 57 1584 -2 2 -2726 0 24 -1381 228 1094 1703 439 243 19 157 -1433

RO 1827 1759 11522 5509 1617 2235 9052 1351 309 -57424 1722 5063 7738 5352 3264 428 -51509 1 794 558 457 236 1665 1836 25370 1550 0 3297 602 -28 13834

SE -191 58 123 -108 78 203 2601 -1846 -71 2196 -3256 373 -337 -9 616 -270 1361 0 -51 47 -66 -46 -252 -2902 897 174 605 0 -10 88 -1

SI -626 -132 18 -336 16 21 -310 -9 5 465 23 121 60 28 45 6 42 -19 3 14 3 -2 -68 29 230 38 118 2 0 -158 372

SK -388 400 295 -3395 60 -27602 874 444 96 7770 574 2092 873 -110 810 161 4814 -9 196 212 111 68 189 470 6658 608 2105 1077 128 0 418

UK 425 4961 -283 729 -1966 159 17644 -554 -84 -10099 -256 -6329 -4919 -2361 3976 323 1895 2 -3050 795 -513 -536 405 850 -538 -367 987 -687 14 -586 0
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6 Results 

A file containing the full suite of Model (v) and Model (vi),    
  

 and    
   estimates is publicly 

available for anyone wishing to make use of the data through the following link: 

http://dl.dropbox.com/u/8649795/Multilevel_SIM_Results.xlsx 

6.1 Major pattern exemplification 

MLSIMs offer the opportunity to examine inter-regional flows between all countries in our chosen 

EU system – examining all flows or even all significant flows would be an extensive task. Therefore 

we will take the UK as exemplification. Figure 17 depicts all flows entering UK regions from other 

EU regions modelled using the optimum,     constrained Model (iv) from the family of MLSIMs.  

 

Figure 17 - Flows greater than 200 migrants entering UK regions from other EU system regions, 

2006 

http://dl.dropbox.com/u/8649795/Multilevel_SIM_Results.xlsx
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Figure 18 - Flows greater than 200 migrants leaving UK regions for other EU system regions, 

2006 

A number of important patterns emerge. Firstly, the importance of London and the South East corner 

of the UK is very apparent – nearly all flows are concentrated in this area, with only a small number 

entering regions containing other large cities such as Manchester and Birmingham. A large number of 

flows come from regions in Poland, many of which terminate in London. Interestingly, flows from 

Poland into East Anglia, which have gained so much media attention in the UK are picked up by the 

model, even at a region-to-region scale. One small caveat in relation to these flows can be made 

referring back to our observations about the relationship between internal and international migration 

distributions in Poland made in Section 5.1 – where the relationship between these flow distributions 

is poor in Poland, some of the precise flow volumes originating from these Polish NUTS2 regions 

should be treated with caution. Where these relationships are stronger in France and Spain, the large 

flows from other major capital cities such as Paris and Madrid can be viewed more reliably, indeed 

given the ‘capital city effect’ also noticed, these flows may even be larger in reality. High volume 
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flows are also noticeable from Cyprus, although these may well be associated with armed forces 

movement.  

Examining the flows out of UK regions to the rest of the EU system, the South East – and especially 

London – predominates as with immigration. Destinations for migrants leaving the UK are quite 

different to the origins for those arriving in 2006. The large volumes of migration (we may assume 

related to retirement) can be observed flowing into Spanish regions – regions including the largest 

cities of Madrid, Barcelona and Valencia, as well as the Costa del Sol. Large flows can also be 

observed from London and other regions of the UK into Ireland – this is partially a function of Ireland 

consisting of only two regions and so these flows appear more concentrated, although the close ties 

between all countries of the UK and Ireland mean that these flows are entirely expected.  

6.2 Evaluation 

Evaluating the success of models such as those in the MLSIM family can be difficult task, where by 

definition there are no comparable data with which to validate the results. As shown in Section 5.2.2, 

it is possible to aggregate the NUTS2 regional level predictions from the suboptimum MLSIM Model 

(v) into country level predictions and compare these with the MIMOSA model predictions. This 

comparison can also be carried out for the recorded data for some counties collated by Eurostat. 

Comparing the results from two models with recorded data is an exercise which should be approached 

with caution. As mentioned at the beginning of this paper, the researchers involved in the MIMOSA 

project recognise the limitations of the estimates produced. Similarly, whilst the data from Eurostat 

are recorded rather than modelled and thus might be viewed as more reliable, this is not necessarily 

the case. Harmonised, consistent and accurate international migration data across European countries 

are not a reality (Poulain et al. 2006) – hence the inception of projects such as MIMOSA and IMEM.  

Migration flow data for 2006 were obtained from the Eurostat database from Table migr_imm5prv 

(immigration by sex, age group and country of previous residence). Whilst data are available in this 

table for all 31 country origins, only 20 destinations are available; and of these, not all have the full 

set of origin/destination flows. Consequently, it is not possible to evaluate all flows, although it is 

possible to compare 583 origin/destination pairs.  

Table 8 compares the inter-country flows from the Eurostat data with modelled data for 2006 from the 

MIMOSA model and from the suboptimum Model (v)   
  and   

 
 models. A suite of measures are 

used to assess the relative model performances. Taking the R
2
 first, the MIMOSA model appears to 

perform better than the results aggregated from the regional MLSIMs, with a value of around 57% 

compared to 52% and 55%. This better performance would appear to hold when examining the % of 

misallocated flows, with MIMOSA misallocating around 10% fewer flows than the aggregated 

MLSIMs. However, when examining the figures for the SRMSE and the sum of the squared 
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deviations, it appears that the suboptimal MLSIMs fit the Eurostat data better, with lower deviations 

than the MIMOSA model.  

Given this evidence, whilst it is difficult to say that one method produces preferable results to the 

other, it is possible to say that the fits to the Eurostat data are not wildly different from one another 

and in some sense validating the results of the suboptimal MLSIMs. As we have shown already 

though, there are some country pairs with high levels of interaction which are unexpected with the 

assumption that propensity to migrate drops off with distance.  

The question is, where the two models differ, which estimate is most likely to be closer to reality? 

Comparing the model results with the corresponding cells in the Eurostat data, we can observe that the 

under-estimate of flows from Poland into Germany in the suboptimal Model (v) holds and the 

MIMOSA estimate is likely to be more accurate. However with only some 3,227 migrants recorded 

flowing from Germany into Poland by Eurostat, it might be that the lower MLSIM estimate here is 

more accurate. In reality, however, issues with the way in which Poland records permanent migrants 

(Poulain et al. 2006) means that this figure of 3,227 is very likely to be a large underestimate, and so 

this comparison may be misleading. 

Table 8 - Comparison between flows recorded in Eurostat Table migr_imm5prv and modelled 

migration flows at country level 

Model R
2
 SRMSE Sum Sq Dev 

% 

Misallocated 

MIMOSA 0.571 104.271 21,176,403,803 21.863 

MLSIM suboptimal model (v)   
 
 0.518 94.637 13,303,422,410 33.148 

MLSIM suboptimal model (v)   
 
 0.550 92.409 14,067,006,845 32.505 

 

Indeed, there are other examples where the MIMOSA model appears to perform better for some 

country interactions. This enhanced performance is due to the incorporation of real data where 

possible an offset variable in the statistical model used – what this does is enhance the performance of 

the model where flow estimates based on spatial structure and distance alone are not adequate. For 

example, the distance between Romania and Spain means that we would expect less interaction to 

occur between these countries, when in reality large flows occur for a variety of complex economic 

and socio-cultural reasons (Bleahu 2004). These influences affect the perception of cost which means 

that an effective estimate of this influence is not captured by distance alone. Where this is the case, 

and for instances where there is an absence of supplementary recorded origin/destination data to 

include in the model, then it will certainly be worth exploring what the real cost of migration is. This 
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could be achieved through solving the doubly constrained spatial interaction model equation for     

rather than     using methods already outlined by Plane (1984).  

7 Conclusions and comments on the new framework for estimating 

inter-regional, inter-country migration flows in Europe 

In this paper we have demonstrated the utility of a new framework for estimating inter-regional 

migration flows in Europe. Our guiding principal was a simple one – to make use of the maximum 

amount of available data (embodied in the constraints imposed within the model and the parameters 

used to influence the patterns) to produce maximum likelihood estimates given the information 

available.  

The Model (iv) estimates represent the ‘best-guess’ estimate data at this time. They embody all known 

information about flows into and out of countries, the behaviour of internal migrants within their 

home countries and the relationships between the destination preference of internal and international 

migrants. There are, of course, a number of areas where these estimates could be improved. Firstly, 

the country level international migration data constraints are themselves estimates. The data used 

were taken from the MIMOSA project (Raymer and Abel 2008) – data which the authors recognise 

the limitations of, and which will soon be superseded by improved estimates from the IMEM project 

mentioned in the introduction. Where these model inputs can be improved, then there will be a knock-

on improvement to our own estimates. We have already acknowledged that there are issues with the 

methodology we employed to estimate the   
  and   

 
 matrix margins which formed constraints either 

directly or indirectly for all models. As outlined, in these estimates we have simply taken the national 

distributions of internal migrants to distribute international migrants. Whilst there are high 

correlations between these distributions for in-migration, demonstrated across Europe from Census 

and register data, a ‘capital city effect’ persists where these destinations can attract up to 10% more 

migrants internationally than internally. Furthermore, we have been unable to ascertain whether a 

similar situation exists for out-migration flows. Finally, in using distance decay parameters calibrated 

with internal migration data, we could be introducing error where internal migration flows, even in an 

open border Europe, act very differently to international flows. Our experimentation with suboptimal 

Model (vi) which models internal migration flows using   
  and   

 
 constraints has suggested that this 

might be the case, with country border effects far stronger than the doubly constrained model 

estimates. Model (vi) does not incorporate country-level constraints in the same way as Model (v) and 

results in many fewer migrants than observed being distributed within-countries. Investigating these 

border effects in more detail would be a fruitful avenue of future research.  
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Comparison of the results from the Model (v)   
  and   

 
 (aggregated to country level) with MIMOSA 

and Eurostat data has shown that the models produce results which, for the most part, are comparable 

to both other data sets. The MLSIMs distribute migrants according to physical distance between 

regions in countries and the calibrated distance decay parameters associated with these distances. The 

disagreement in the model predictions for flows between some countries, are the consequence of a 

number of real flows that cannot be characterised effectively using physical distance as the 

distribution proxy. Whilst an issue in this piece of work, the problem offers possibilities for future 

research focusing on the development of new cost measures for an international migration system. 

Given consistent migration data at country level, rearranging the doubly constrained spatial 

interaction model formula will yield estimates of migrant inferred distance.  

Whilst much of the discussion in this paper has focused on the suboptimal models as these allow us to 

explore model failings in more detail, we should finish by extolling the virtues of our optimum model, 

Model (vi). Model (vi) constrains inter-regional estimates to know (but also estimated) inter-country 

flows allowing us to explore the likely inter-regional international flows within Europe. This is an 

important development as for the first time we are able to examine, at a much higher resolution than 

previously possible, pressure points within the migration system. We can see, for example, the regions 

of Spain which are affected most heavily by the large influx of migrants from Romania, and the areas 

of Romania which are equally as affected (if not more) socially, demographically and economically 

by these large flows of people. Whilst even in this optimum model there are improvements that can be 

made, now the modelling framework is in place, when improved inputs can be supplied to the model, 

then improved outputs can be very easily achieved. Our also need not be limited to Europe – the 

framework is in place for Europe, but can easy be applied to estimate sub-national flows in a global 

context, opening up exciting possibilities for a more complete global understanding of migration 

which has not been possible before. 
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