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Abstract 

For almost two decades, cellular automata (CA) has proven to be a popular and sometimes 
effective modeling approach to the study of complex urban systems. Not only as a new 
methods for predictive simulation but also as a practical policy support tool, CA models have 
been applied to a large collection of diverse urban regions which now provide a good basis for 
comparative analysis. After sketching some basic ideas about how CA models can be applied 
to urban systems, we describe and then calibrate two well known and widely applied CA 
models, SLEUTH and Metronamica, to simulate the future urban growth of the Seoul 
Metropolitan Area, Korea. This is for the express purpose of generating the impacts of 
practical planning policies on the study area and of conducting comparative explorations of 
these CA models themselves. The results confirm the value of CA which provides a rich 
exploratory of knowledge for investigating dynamic urban growth systems and for evaluating 
the impacts of possible policy options. Moreover, the concurrent use of two generic CA 
models provides certain insights in the use and development of CA urban models in general 
and these two models in particular. 
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1 INTRODUCTION 

Since the first generation of urban models was developed in the form of Land Use Transport 

Interaction (LUTI) models in the 1950’s and 1960’s, the dominant style of such model has 

evolved from an early focus on aggregate and comparative static, cross-sectional approaches 

to more detailed disaggregate and temporally dynamic procedures (Iacono et al., 2008, Batty, 

2009). This is partly due to developments in gathering bigger, more individualized data sets, 

as well as through dramatic advances in computation but this is all predicated on the fact that 

there is now general agreement that cities need to be simulated from the bottom up rather than 

top down. Evolution and change is central to the way cities evolve and it is now widely 

regarded that such dynamics must be built into the structure of the most applicable models. 

While traditional urban models pay more attention to the static impact of transportation on 

land use change, recent urban models have thus focused on the dynamic transformation of 

urban morphology with much lesser emphasis on transportation per se and this has spurred 

the development of such models (Batty, 2004). Although these new styles of model have less 

explicit links to policy than their predecessors, such models still have an important role in 

informing policy-making and supporting the decision-making process. 

Cellular automata models have been at the forefront of such disaggregate and dynamic 

approaches in that they provide an effective and somewhat neutral as well as generic 

representational framework for the study of land use change and urban growth. Since urban 

growth occurs in time and space, disaggregate and dynamic modelling approaches provide a 

useful knowledge base for understanding the urban growth process and the signature spatial 

patterns that represents their outcomes. In addition, while urban growth can be understood as 

a complex system characterised by processes and behaviours based on self-organisation 

giving rise to multiple non-linearities, CA modelling allows us to encapsulate these 

characteristics of urban systems.  

Here we will demonstrate these ideas by applying SLEUTH and Metronamica to the Seoul 

Metropolitan Area (SMA), the capital region of Korea. The purpose of our presentation of 

urban growth simulation with these models is twofold: to calibrate the model for a large, 

typical urban case study area which is dominated by practical planning instruments such as 

greenbelts and new towns, and to explore the methodological implications of what these two 

models are able to predict for these regions through such empirical applications. Firstly, the 
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research reported here seeks to explore future urban growth trends in the study area and the 

possible consequences of different planning options 1 . To this end, among multiple 

possibilities, two scenarios are presented, based on business as usual and greenbelt 

deregulation. These scenarios are used for each model and the results and implications are 

discussed at the end of each simulation. Secondly, since the use of two generic models 

provides enables us to develop a basic comparative framework, this research goes beyond this 

in seeking more general implications for urban CA models and their applications. However, 

the objective is not to evaluate the performance of each model per se but to sketch the 

dilemmas of model calibration and the difficulties of developing them for planning support. 

Although a close comparison of model outcomes is possible, this is quite limited since the two 

models have different processes of simulating model behaviours as well as different data 

requirements, despite being based on a generic CA structure. Rather, we try to draw broader 

implications for CA urban models and their uses in general. Discussion is provided in this 

regard in our concluding section.  

2 CELLUAR AUTOMATA URBAN MODELS 

CA systems were originally designed to study self-replication in the natural sciences, 

originally as computable systems in general and then in fields such as biology and physics. 

The approach first came to the attention of geographers, particularly Tobler (1979), in the 

early 1970s where he saw the correspondence between the development of CA by researchers 

such as Arthur Burke and John Holland at Michigan and his own work in cartographic 

representation. In this sense his paper on simulating Detroit (Tobler, 1970) launched the field 

but it was not until the late 1970s, that he first suggested that the geographic phenomenon 

could be translated into a cellular array and explored through CA mechanisms based on 

neighbourhood types and transition rules (Tobler, 1979). Tobler suggested five types of model 

that explain dynamic land use change in a cell space. Although some are not purely CA but 

cell-space systems and thus closer to the kind of raster operations that one sees in GIS, these 

models offer important insights such as the integration with GIS layers with principles of land 

                                            

1 The simulation work in this research was supported by a project from the OECD 
(Organisation for Economic Co-operation and Development). The project involved showing 
how new kinds of widely available land development models based on CA might inform 
planning policy in the Korean urban context. 
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use development based on the notion of CA neighbourhoods. The models proposed by Tobler 

(1979) can be described as follows: 

t t t
xy xyc c+Δ ≠          (2.1) 

( )t t t
xy xyc F c+Δ =          (2.2) 

2( , , ,..., )t t t t t t t t k t
xy xy xy xy xyc F c c c c+Δ −Δ − Δ − Δ=       (2.3) 

( , , ,..., )t t t t t t
xy ij ij ij ijc F e f g h+Δ =        (2.4) 

,( )t t t
xy x i y jc F c+Δ

∀ ∀=         (2.5) 

where t
xyc  is the land use category such as urban and rural at the cell location x, y at time t, 

and t t
xyc
+Δ  is the land use category at the same location in the future. If Model 1 (equation 2.1) 

holds, this suggests an independent random land use change which has no relationship with 

previous land use at the spot. Model 2 (equation 2.2) simply notes that a land use change at 

location x, y at time t+∆t functionally depends on the previous land use at that location. 

Model 3 (equation 2.3) defines historic land use change. Land use change in the future is a 

result of land use at that location in several previous time steps and this kind of model often 

appears in econometric formulations where variables at past time periods are lagged in time 

and influence. Model 4 (equation 2.4) proposes a multi variable (or layer) cellular operation. 

The land use depends on the several different additional factors at the same or different 

locations. Model 5 (equation 2.5) suggests an application of a typical CA system where land 

use depends on the land use of its neighbours in the previous time, that is where ix∀  and 

jy∀ represent the cell neighbours of x and y  called i  and j . Despite possible limitations 

such as complexity of the actual geography, Tobler (1979) concludes that these approaches 

make it possible to pursue the numerical study of non-numerical geographic systems.  

This new approach to the study of geographical representation began to influence urban 

modelling in the 1980’s and soon it became a dominant paradigm. Couclelis (1985) first 

presented an hypothetical CA model in an urban context, exploring how changes in individual 

cell states can represent large scale urban change. The development of new methods of urban 

morphology based on fractals provided a spur to the use of CA for the generation of many 
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fractal shapes across different scales is essentially based on the CA algorithm (Batty and 

Longley, 1994). These developments were then followed by various proposals that CA might 

be used for actual urban systems growth which in turn is based on the notion that urban 

growth is fractal. Combined with GIS, packaged CA models focused on urban growth such as 

SLEUTH and Metronamica appeared in the mid to late 1990s with the CA urban model 

becoming one of the most popular approaches to the study of contemporary urban systems. 

However, the CA model has not simply remained as a new methodology. Linked to the 

complexity sciences, it has provided a much broader knowledge framework in which to 

understand urban systems in terms of interactions between their components, their spatial 

structure, and their temporal dynamics (Batty, 2005). 

The very power of the CA model is the simplicity of its transition rules which gives rise to 

much richer resulting system behaviour than in other forms of model. Such complex system 

behaviour emerges from very simple local interactions between individual cells and this is the 

essence of emergence in terms of the way spatial patterns repeat themselves, in scaling self-

similar fashion. As a proof of concept, before proceeding to the calibration of SLEUTH and 

Metronamica, we present a couple of abstract CA models to demonstrate how simple local 

transition rules can be used to emulate a complex urban growth. Furthermore, these examples 

also show how such basic patterns generated by simple local rules can be further augmented 

by global level rules which have an analogy with planning regulations and external 

investments. 

Imagine a two dimensional grid space which contains numbers of cells. Each cell has either of 

two possible states: urban or non-urban. Each cell checks the state of any cells which 

comprise its neighbours in its Moore (8 cell) neighbourhood in each time step and updates its 

own state, dependent upon the status of its neighbourhood in the next time step. Suppose that 

there is an initial urban centre composed of four urban cells. Let a vacant (non-urban) cell 

become an urban cell if three or more neighbouring cells are in the urban state. As shown in 

Figure 2.1, the resulting pattern is a mono-centric urban growth which is well explained in the 

domain of urban economics. However, note that what drives such growth here is not the 

decision-making of economic actors but simple interaction between cells. This clearly 

captures the strength of the neighbourhood effect in the CA model. 
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t=0                                 t=10                               t=20                               t=30 

Figure 2.1. Simulation of Simple Concentric Urban Growth in a CA System 

 

Dynamic and heterogeneous spatial conditions can add more reality to the above model. The 

following simulation is run with the same initial conditions and transition rules, but let us now 

imagine a new town development on the left side of the growing urban cluster and a new park 

on the right side. Such two different entities are introduced at t=20 for this simulation. The 

new town itself is not growing although it is in an urban state since no cells in the boundary of 

the new town area have three or more urban cells in the Moore neighbourhood. The park is 

also static over time because the area does not contain live urban cells. However, the park is 

protected from urban development by global regulation while the new town is not protected 

since it is already urban. 

    
t=0                               t=10                           t=20                              t=30 

    
t=40                            t=50                             t=60                          t=70 

Figure 2.2. Simulation of Planned Development and Zoning Regulation 
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As the central urban cluster grows, these two urban clusters merge together forming a 

conurbation but the protected park area is not affected by ongoing urban growth. Figure 2.2 

presents the sort of dynamic change that emerges in simulating such an urban growth system. 

Now the following model assumes different initial conditions and transition rules. Let there be 

an urban core in the centre of space and a road network in its four perpendicular directions, i.e. 

north, south, east and west. It is an a priori condition here which mimics this possible real 

world geographic features but it might mirror the dynamic introduction of a new 

transportation network if necessary. Let a vacant cell become urban if there is more than one 

urban cell in the neighbourhood but only when there is a road cell in the Moore 

neighbourhood at the same time. The result is a linear urban growth along with the road 

network as shown in Figure 2.3.  

    
  t=0                              t=1                                 t=2                           t=5 

Figure 2.3. Simulation of Road Dependent Urban Growth 

 

It is clear that power of the CA model lies in its ability to represent complex system behaviour 

from such simple local interactions between cells. This of course is the basis of simple 

diffusion but the discreteness of the lattice on which development is played out leads always 

to some symmetry-breaking of rules when they are operated with some degree of random 

noise. The above mechanisms however can be the basic building blocks for developing a CA 

urban model. However, simulating actual urban systems requires much richer methods and 

transition rules which depend on many ad hoc constraints and invariably stochastic cell 

transitions. Various modifications in defining cells, cell states, neighbourhoods, and transition 

rules are also possible and indeed necessary for modelling actual urban systems. We now will 

demonstrate how CA urban models can effectively simulate urban growth systems by 

augmenting the standard and generic models with various mechanisms and constraints which 

characterize the specification and calibration of the SLEUTH and Metronamica models. 
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These comparisons will then give us the opportunity to develop further implications for the 

design and construction of CA urban models in general. 

3 THE STUDY AREA 

The Seoul Metropolitan Area (SMA) consists of Seoul city, the capital of Korea, and 32 

surrounding municipalities. The area of the SMA in 2010 is approximately 11,801 km2, 

11.8% of the total area of Korea, but containing about half of the total population of Korea 

(some 49m in 2010). This is a large dispersed metropolitan area which is more or less 

comparable with the Greater South East in the UK. It is located in the north western part of 

the nation, and the area borders North Korea to the north. The Demilitarised Zone (DMZ) was 

installed as a buffer zone in the area between South and North Korea after the Korean War, 

and the area outside the DMZ, which is the northern edge of the SMA, is heavily militarised. 

To the east, the SMA borders the province Kangwon which is the most mountainous area of 

Korea. Thus the eastern part of the study area is dominated by a high-altitude area. On the 

west, it borders the West Sea which is an area containing flat plains and low rising hills. The 

southern part of the area also has relatively flat areas and it borders Chungcheong province. 

The Han River which is the main water source of the region flows from east to west in the 

middle of the region and through the city. Two upper rivers, the North and South Han River, 

merge outside of Seoul, and the river passes through the middle of Seoul city. The environs of 

Seoul city are protected by a greenbelt. The key features and overall characteristics of the 

study area are depicted in Figure 3.1. 

The SMA has experienced diverse growth within relatively short time periods although the 

growth of the SMA is largely shaped by the influence of Seoul city. Urban growth in the 

SMA was centred on Seoul city until the 1970’s. However, after the introduction of the 

greenbelt in the early 1970’s, the physical expansion of Seoul city has been strictly regulated. 

While the greenbelt has successfully prevented further expansion of Seoul, it could not reduce 

the need for urban development itself, and as a result, new urban development has occurred in 

various locations outside the greenbelt in the SMA, thus leapfrogging the constrained area 

which is reminiscent of growth patterns in many other large cities such as London which have 

a long history of containment through green belt policies. 
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Figure 3.1.General Characteristics of the Study Area 

 

As a result, the SMA as a whole has experienced dramatic population growth over the past 

decades. The region has been the centre of various high profile socio-economic and cultural 

activities in Korea – politics, finance, commerce, higher education, research and development, 

media, and entertainment. Such functional agglomeration once again has attracted population 

from elsewhere in Korea and from abroad. Although the population growth rate of the SMA 

has slowed since 2000, the region is still gaining population. The SMA’s population increased 

from 22.0 million in 2000 to 24.3 million in 2009, which is 49% of the total population of 

Korea. If this trend continues, the population of the SMA will continue to grow, and 

according to the figures projected by the National Statistical Organisation of Korea, total 

population of the SMA will reach 25.7 million by 2020 and 26.3 million by 2030 when it is 

projected that more than 54% of Korea's population will live within the SMA. Table 3.1 

summarises the past population growth trends of the SMA, and Table 3.2 shows the projected 

population growth. 
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Table 3.1.Past Population Growth 

 
 1985 1990 1995 2000 2005 2009 

Whole 
country 

 
40,419,652 

 

 
43,390,374 

 

 
44,553,710 

 

 
45,985,289 

 

 
47,041,434 

 

 
49,773,145 

 
 

SMA 
 

15,803,288 
(39.1%) 

 

 
18,573,937 

(42.8%) 

 
20,159,295 

(45.2%) 

 
21,258,062 

(46.2%) 

 
22,621,232 

(48.1%) 

 
24,379,491 

(49.0%) 

Source: Statistics Korea, accessed 23/12/2011, http://www.kosis.kr/abroad/abroad_01List.jsp 

 
 

Table 3.2. Projected Population Growth 
 

 
 2010 2015 2020 2025 2030 

 
Whole 

country 
 

48,874,539 49,277,094 49,325,689 49,107,949 48,634,571 

SMA 24,336,199 
(49.8%) 

25,191,245 
(51.1%) 

25,786,378 
(52.3%) 

26,161,866 
(53.3%) 

26,315,824 
(54.1%) 

Source: Statistics Korea, accessed 23/12/2011, http://www.kosis.kr/abroad/abroad_01List.jsp 

 

Intensive population growth in the SMA has resulted in the dramatic conversion of open 

space into urban built up areas. The historic urban extent clipped from land cover data by the 

Korean Ministry of Environment catches rather well the past urban growth trend of the SMA. 

It is clearly observable that the total urban built-up area of the SMA has significantly 

increased over time. The data shows that the urban built-up area increased from 

approximately 5.7 percent of the total land area in 1985 to 15.2 percent in 2006. The increase 

has slowed during the 2000’s, along with a slowing population growth rate of the SMA. 

However, the urban built-up area in the SMA is continuously increasing, consuming available 

open space and damaging the natural environment. In addition, scattered urban development 

is much more notable than 10 years ago. The overall urban growth pattern and the changing 

form of the study area is depicted in Figure 3.2. 



   11 

 
Figure 3.2. Changes in the Urban Built-up Area in the SMA, 1985-2006 

. 

Two types of urban development have shaped the overall urban growth of the SMA. Firstly, 

the public sector has led large scale development in the SMA. In an effort to resolve the 

housing shortage problem in the capital city Seoul, a series of major new town developments 

took place in the 1990’s in areas close to Seoul such as Bundang, Ilsan, and Pyeongchon. 

More new town development but at a much the smaller scale has occurred more or less 

continuously at further distances due to the depletion of large scale vacant sites near Seoul. 

Secondly, small scale development by private developers has followed these larger 

developments, eventually resulting in a serious urban sprawl problem in the SMA. As a result, 

the SMA has suffered greatly from urban sprawl over the last decade. Necessary policy 

measures have been taken to stop undesired urban sprawl, but the small scale and dispersed 

development pattern still dominates current urban growth in the SMA2. 

                                            

2 The sprawling urban growth pattern was identified by conducting a patch analysis of land 
cover data for 2001 and 2009. Whereas the number of urban patches increases from 10472 to 
22900, average patch size decreases from 13.41 to 6.44. The result implies that the urban 
built-up area has increased but at a much smaller scale and higher urban density. 
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This rapid urban growth and sprawl in the SMA has resulted in diverse urban problems such 

as raised infrastructure costs and damaged natural environments. It is foreseeable that future 

growth would further consume vulnerable agricultural areas. Urban development in the SMA 

occurs wherever it is possible. However, in a democratic market regime, there are no absolute 

means to prohibit such spontaneous urban development. It is thus particularly important to 

understand how complex urban growth occurs and how certain policy actions can intervene to 

reduce the problems of growth and sprawl. We thus move onto examine what two urban 

growth models might be able to tell us about urban growth in Seoul, and we begin with the 

SLEUTH model. 

4. THE SLEUTH MODEL 

4.1 Model Overview 

SLEUTH is an urban growth and land use change simulation model originally developed by 

Keith Clark at the University of California, Santa Barbara, in the early 1990s under the 

auspices of the US Geological Survey (USGS) and Environmental Protection Agency (EPA). 

The model was initially applied to the San Francisco Bay area from 1993-1997 (Clarke et al., 

1997) and since then the model has been applied to over 100 cities and urban regions around 

world (Clarke, 2008). The model has provided useful understanding of urban growth and its 

implications for planning policies in diverse regions and it is clearly one the most widely used 

CA based urban growth simulation model which focus on urban growth and development 

(Jantz, et al., 2010). It is worth noting however that this class of model is based on a very 

different set of assumptions from the other main class of LUTI models that focus much more 

on activity location and spatial interaction than on actual physical development and land use 

that is the focus of these CA type models. 

The model name is an acronym for six types of spatial data layer: Slope, Land use, Exclusion, 

Urban, Transportation, and Hillshade. Except for the hillshade layer, which is optionally used 

as a backdrop image for visualisation purposes, all other five layers are essential for model 

calibration and future simulation. The model requires greyscale 8 bit GIF images as an input 

data format which have a pixel (cell) value from 0 to 255. Relevant cell values for each layer 

are assigned in this range. All input images must be spatially consistent. They must have the 

same spatial resolution (size of individual cell) and spatial extent (size of entire cell space) so 

that the cells in all layers can be properly aligned. Since SLEUTH is a pure model without 
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data processing capability as part of its core software, such input data need to be pre-prepared 

with external GIS and image processing software. 

A standard CA system framework first of all forms the backbone of SLEUTH. The model 

adopts the core elements of CA systems to simulate urban growth: 1) the cell: the basic 

computational unit in a CA system. A cell size is defined as an input data resolution in 

SLEUTH; 2) cell space: a two dimensional array of cells. It is defined by the dimension of 

the input data; 3) cell state: An attribute value assigned to the cell. Each input layer holds 

relevant cell values between 0 and 255; 3) neighbourhood: the spatial relationship of one cell 

to another. SLEUTH uses a classic Moore neighbourhood, 8 cells based on a 3x3 grid of 

which the central cell is the focus of the neighbourhood, and 4) transition rules: conditions 

governing the change of a cell state from one to another. It is typically defined by the states of 

neighbouring cells in the case of simple CA systems. In the case of SLEUTH, the cell 

transition occurs in the urban layer, but the model incorporates additional information from 

reference layers such as slope and transportation as well as information from model 

parameters. 

Based on such CA system fundamentals, the urban growth dynamics is jointly determined by 

a range of additional functions and methods in order to capture realistic urban system 

behaviour. Basic building blocks are 1) suitability conditions, 2) growth rules, 3) growth 

coefficients, and 4) self-modification rules. The suitability condition globally filters out those 

cells that are not subject to future growth and also defines basic potentials for urban growth. 

This condition is defined by two input layers: the exclusion and the slope layer. The area in 

the exclusion layer is literally excluded from future growth. In addition the areas with slopes 

greater than 21 percent are also excluded by default (note that this threshold can be 

modifiable). All other areas are relevant to future urban growth, but the potential for 

urbanisation is calculated by the slope value at each cell and the globally defined slope 

coefficient. 

The growth rules form the core of urban growth dynamics in SLEUTH. Under the Moore 

neighbourhood configuration, this defines how individual cells become ‘urban’ or remain 

‘non-urban’ when they meet certain conditions. SLEUTH defines four types of growth rule 

which occur sequentially and iteratively: spontaneous growth, new spreading centres, edge 

growth, and road-influenced growth. A set of four growth types forms one growth cycle 

which represents one year in the simulation environment. Spontaneous growth represents the 
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random urbanisation of land. It simulates the small scale low density urban development 

which occurs independently from existing factors such as urban clusters and transportation 

networks. A new spreading centre determines whether isolated single urban cells generated in 

the previous step will become new urban centres which have a capacity for further urban 

expansion.  

Once the cell is selected as a new spreading centre, two neighbouring cells are additionally 

converted into urban cells forming an urban block which has three of more urban cells. Edge 

growth further defines urbanisation from the established spreading centres. This type of 

growth simulates the expansion of existing urban clusters into their surroundings. If a non-

urban cell has at least three urbanised cells in its neighbourhood, then the non-urban cell has a 

certain probability of becoming an urban cell. Road-influenced growth, as the name suggests, 

represents urbanisation largely directed by transportation networks and hence by accessibility. 

In this growth step, growth is jointly determined by the existing transportation network and 

the most recent urban development generated in the previous three steps. This consists of a 

range of steps affected by different coefficients, but in a nut shell, it ultimately generates 

spreading centres adjacent to the road networks, allowing urbanisation of up to two cells 

along the road. The above four growth rules are controlled by five growth coefficients: 

namely dispersion, breed, spread, slope, and road gravity. Each parameter has a value from 0 

to 100 and guides single or multiple growth rules.  

In addition to the growth rules and coefficients that invoke and control urban growth, another 

rule set kicks in to complete the urban growth dynamics of SLEUTH. While the five 

coefficients are defined as model parameters at the beginning of the simulation, the self 

modification rules at the global scale dynamically alter certain coefficients during the 

simulation runs. What this does is speed up or slow down overall urban growth. This self 

modification feature aims to add a degree of non-linearity to the overall urban growth system 

and to enable simulation of more realistic urban systems.  

4.2 Input Data 

SLEUTH runs over a grid space and derives model parameters from statistical analysis of 

raster based spatial data. Thus having good quality data is a first step in ensuring a successful 

implementation of SLEUTH. However, this project application to the SMA floundered on not 

being able to find data good enough for this simulation. After checking available digital data, 

we realized that custom data building would be the more desirable option to better calibrate 
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the model. However, in order to minimise data preparation efforts, we decided to rely on the 

best available data even though we know that certain layers are incomplete and inaccurate. 

Inevitably this restricts the validity and usability of the simulation results. These issues with 

this input data will be further discussed later, but first descriptions about each input data and 

acquirement detail will be presented in the order in which we build and consider the layers in 

the acronym SLEUTH. 

• The Slope layer can be typically processed from DEM (Digital Elevation Model) data. 

This study used the DEM data built and maintained by the National Geographic 

Information Institute in Korea and we utilised this to create the slope layer. The spatial 

resolution of original DEM data is 5m, and the base year is 2005. 

• Land use data is not a requirement for the urban growth simulation. However, this 

research used land cover data to extract other required input layers such as urban 

extent and excluded area. The Ministry of Environment in Korea produces different 

types of land cover data for the nation. What is called the ‘low resolution version’ has 

a resolution of 30m and has 7 land categories. It is processed from Landsat TM 

(Thematic Mapper) imagery. The ‘mid resolution version’ is processed from 2.5m 

resolution SPOT 5 (Système Probatoire d'Observation de la Terre 5) and KOMPSAT-

2 (Korea Multi-Purpose Satellite-2) imagery. This version of land cover data is 

however further refined by actual field survey and published in a vector format. This 

means it can be converted into any raster resolution. It has 22 categories of land cover 

which break down the former 7 categories of the low resolution version. The high 

resolution version uses 1m spatial resolution imagery of KOMPSAT-2 (Korea Multi-

Purpose Satellite-2) as source data. It has 41 land classifications which are further 

subdivided from the categories of the mid resolution version. But this high resolution 

only covers a part of the nation at the moment and in this project, we acquired the low 

resolution version for 1985, 1990, 1995, 2000, and 2006, and the mid resolution 

version for 2001 and 2009. 

• The Exclusion layer was created from a combination of natural barrier and 

institutional regulations. The natural barrier simply included water bodies which are 

extracted from the low resolution version land cover data for 2006. Then this was 

combined with the greenbelt area which was obtained in vector format. A partial 

exclusion is not considered. The urban extent layer is extracted from the low 
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resolution land cover data while the years chosen for the calibration are based on data 

at 1990, 1995, 2000, and 2006.  

• The Transportation layer was the most difficult input data to prepare for this 

simulation. Although various GIS data coverages covering a wide range of land use 

and transport data are commonly available nowadays, at least for the study area of the 

SMA, time series geographic data are extremely rare except for that processed from 

satellite imagery. In this project although we could obtain the whole road network data 

for the study area, (which is in vector format holding all information about road 

classes and types), we could not obtain dedicated historic transportation network data. 

Only a single time was available for the road data which is dated to the year 2005. At 

least two historic time points are necessary for model calibration. We consequently 

decided to use incomplete transportation data extracted from a series of land cover 

data. The alternative option was to extract the “transportation” category from the mid 

resolution land cover data. Two transportation layers, 2001 and 2009, were available 

as a result. However, this transportation data has quality issues, for it is not strictly 

speaking considered as route data but as land use area data and thus difficult to use as 

a proxy for transport networks. As non-dedicated road data, this not only includes road 

networks but also auxiliary transportation facilities such as car parks and even airport 

runways. It is clear that this needs to be much refined if it is to be seriously used for 

urban development simulations. Besides, this extracted data does not have attribute 

information about road hierarchies. In this case, major motorways and local roads will 

have same attractiveness level which is a somewhat unrealistic assumption. Despite 

these problems, we decided to use the data without custom manipulation since such 

corrections would have required significant time and cost with the quality of 

improvement still remaining in doubt.  

• Hillshade is a grey scale image that facilitates the interpretation of the terrain surface. 

If overlaid as a background, it greatly enhances visual readability of the base map. It is 

typically produced from DEM data using simple automatic functions in many GIS 

applications. The hillshade layer for this study was also created from the DEM data 

described above using a standard GIS package.  

All source data were collected under such conditions, but deciding a suitable resolution for 

calibration and simulation was a difficult decision. Technically the finest resolution possible 
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for this case is 30m, which is the low resolution version of the land cover data. Although 

other sources are available at a finer resolution, resampling the 30m resolution data to a finer 

scale is pointless. Thus, in estimating computing power required and considering data quality, 

we initially adopted 50m resolution and prepared the input data accordingly. The grid 

dimension was 2650 3078×  for the whole study area including the ‘no data value’ areas. 

However, the computer used for this simulation could not initiate the calibration, returning a 

memory error3. We then tried different levels of resolution and finally decided that 100m was 

an appropriate input data resolution. The grid size thus becomes 1325 1539×  for the study 

area. Then the data were further re-sampled at 200m and 400m resolution for the calibration 

process, which is a requirement of the model. Details of input data layers are described in 

Table 4.1 

Table 4.1. Source Data and Descriptions 

Layer Source Raw Data Provider Original 
Resolution 

Base 
Year 

Slope Processed from DEM National Geographic 
Information Institute 5m 2005 

Land Use Extracted from Low 
Resolution Land Cover 

Ministry of 
Environment Vector 

1990, 
1995, 
2000, 

2006, 

Excluded Extracted from Low 
Resolution Land Cover 

Ministry of 
Environment 30m 2006 

Urban Extracted from Low 
Resolution Land Cover 

Ministry of 
Environment 30m 

1990, 
1995, 
2000, 
2006 

Transportation Extracted from Mid 
Resolution Land Cover 

Ministry of Land, 
Transport, and 
Maritime Affairs 

vector 2001, 
2009 

Hillshade Processed from DEM National Geographic 
Information Institute 30m 2005 

 

                                            

3 SLEUTH requires significant computing power. It is often necessary to use parallel 
computing or rewrite the source code to run the model for large areas at fine resolution. 
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4.3 Model Calibration 

Running SLEUTH for predicting future urban growth requires the model to be calibrated 

beforehand. Generally speaking, the calibration of SLEUTH involves adapting the SLEUTH 

generic model to a particular study area by applying a parameter set unique to that area. More 

specifically, the main purpose of the calibration of SLEUTH in this case is to determine the 

best fit value for the five growth coefficients (dispersion, breed, spread, slope, and road 

gravity). 

The calibration of SLEUTH is automatic and achieved by using a so called “brute force” 

algorithm and supported by related statistical methods. Examining all possible cases until a 

solution is found is a useful problem-solving strategy, but it is only practically possible with 

the use of large scale computation requiring significant run time. During the calibration, all 

possible combinations of parameter values are applied to the past urban seed data and then the 

simulated results are checked against the historic urban data to see if the model reproduces 

known observed growth patterns. However, SLEUTH does not automatically pick a single 

best fit parameter set as a result of calibration. It creates 13 metrics which can be used to 

evaluate the goodness of fit between the simulated and observed. In more detail, SLEUTH 

produces statistical correlation scores for 13 predefined measurements along with each 

combination of five parameters. The measurement metrics include the total number of urban 

pixels, urban clusters, urban edges as well as other features.  

The calculation of statistical correlations for 13 metrics for every combination of parameters 

in each phase is automated, but the selection of a best range for next step is a role for the user. 

The difficulty is that each of 13 metrics compares different aspects of the spatial patterns. 

Thus there is no one right answer to evaluate the goodness of fit between the modelled and 

observed outcomes. Different researchers choose different measurements, but the LeeSallee 

metric has been among the most popular choices. However, recently Dietzel & Clarke (2007) 

have developed a new measurement, OSM (Optimum SLEUTH Metric), and it has been 

claimed by the authors that the OSM is a better measure than other 13.  

The whole calibration process is broken down into three consecutive steps which gradually 

narrows the search range for optimal coefficient values and increases the resolution of input 

data. The ranges of each coefficient derived from the first step are entered into the second step 

and the same goes for the rest of the steps. The first calibration phase, termed coarse 

calibration, explores the entire range of coefficient values with large increments in parameter 
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values. A quarter of the resolution images from the original full input resolution are used for 

this initial step. The second step, fine calibration, explores the narrowed coefficient values 

using a smaller increment. This step uses half resolution images and produces further 

narrowed coefficient values. The third step, final calibration, uses full resolution images and 

examines further narrowed ranges with a much smaller increment. Then, a single best fit 

parameter set is determined here.  

However, the set determined in the final phase is not yet complete. It is not ready to be used 

for the prediction mode. Although the whole calibration consists of the above three steps, one 

more additional treatment is necessary to get the best fit parameter values for prediction runs. 

Due to the self-modification function of SLEUTH, these starting values of coefficients will 

be altered at the end of simulation year. The self modification increases or decreases the 

growth coefficient values as the simulation continues. To initialise the future simulation, it is 

desirable to use the values at the end year of the calibration than those at the beginning. A 

solution is thus obtained by using the best fit coefficients derived in the final phase and 

running the model again over the calibration period. Then the model will produce ‘self-

modified’ coefficients.  

Our research adopted the standard three step calibration process described above and used the 

OSM to evaluate a goodness of fit. The calibration was conducted over the data between 1990 

and 2006. The initial phase was the coarse calibration. Re-sampled images with a resolution 

of 400m were used. The entire range from 0 to 100 of coefficient values was assigned with an 

increment step of 25. A low number, 4, of Monte Carlo iterations was assigned. The result of 

the coarse calibration phase was evaluated using the OSM, and then the ranges were selected 

from the top 5 scores. The result obtained in the coarse phase was then entered for the initial 

coefficient ranges of the second phase involving the fine calibration. The resolution of input 

images was reduced to a half from full resolution for this step, and the number of Monte Carlo 

iterations was increased to 7. The result was also analysed using the OSM, and then the 

ranges for the next phase were selected from the top 5 OSM scores. In the last phase, the final 

calibration, the ranges obtained from the fine calibration are applied to full resolution images. 

Now the aim is to determine a single best set rather than a range. The number of Monte Carlo 

iterations was increased to 10 for this step. As a result of this step, the best coefficients were 

selected from the top OSM score: 100 for the dispersion coefficient, 91 for the breed, 1 for the 

spread, 63 for the slope resistance, and 61 for the road gravity. However, since these are the 

best set for the beginning calibration year, the ones at the end of calibration after the self 
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modification step is made, are necessary for future simulation. A higher number of 100 Monte 

Carlo iterations were conducted to find the final coefficients for the prediction, which means 

100 simulations were run with the best parameter set produced in the final stage and then the 

coefficient values presented at the ends of calibration year are averaged over 100. The chosen 

ranges for each coefficient in each step as well as the final values after the application of self 

modification rule are described in Table 4.2. 

The derived parameters through such a calibration process characterise past urban growth 

patterns of the study area although these values are bounded by the quality of the input data. If 

this issue is not considered, some local characteristics can be inferred. A low value of the 

dispersion value implies that small scale urban sprawl is less dominant in the area. Low scores 

of the breed and spread coefficients show that such isolated urban developments are not likely 

to become spreading centres thus attracting new urban developments in their surroundings. 

The high value of slope resistance tells us that the urban growth of the study area is greatly 

limited by topography. Finally, the low value of the road gravity parameter implies that the 

urban growth in the area is less affected by transportation networks. 

 

Table 4.2. Calibration Results 

 
Selected Values in Each Step 

Coarse Fine Final Self 
Modification 

Dispersion 100-100 100-100 100 21 
Breed 75-100 90-100 91 1 

Spread 1-1 1-1 1 19 
Slope 50-75 55-65 63 100 
Road 50-100 60-70 61 1 

     

 

4.4 Simulation Results 

We present two scenarios to simulate different growth dynamics generated by distinctive 

policy options: business as usual and deregulation of the greenbelt. There could be many 

different scenarios depending on the policy interests at hand, but these two scenarios are 
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chosen to illustrate important and expected urban growth momentum for the study area. While 

the first scenario focuses on the extension of the status quo, the second scenario emphasises 

the effect of the new policy action. Followed by the calibration on data between 1990 and 

2006, the prediction was run from 2006 to 2030. Although the data used, especially the 

transportation layer, are incomplete and inaccurate, the model produced convincing results in 

comparison with the general characteristics of the study area. 

The ‘business as usual’ scenario assumes the future as an extension of past trends. The term 

‘business as usual’ is often used to describe no particular additional intervention in the future, 

and this is often compared with other scenarios with intended policy actions. Typically no 

significant regional constraints are considered in the case of the ‘business as usual’ scenario. 

However, since a greenbelt has protected expansion of Seoul city over the past decades, such 

a constraint is included in the exclusion layer for this scenario. This scenario allows urban 

development to continue but restrains the growth in the designated greenbelt area. The total 

simulated urban area by 2030 in this scenario is approximately 2264 km2, and about 19.9% is 

urban in whole study area. The net increase of urban land is 4.8%, compared to the urban land 

in 2006. In terms of spatial allocation, this scenario generates less urban development around 

Seoul city but creates small urban clusters up and down the study area where slope values are 

relatively low. Such urban forms are more dominant in the areas outside the greenbelt 

implying leapfrogging sprawl.  

The greenbelt deregulation scenario removes the greenbelt restriction while maintaining all 

other conditions used for the first scenario. This can allow maximum development for the 

region. In this scenario, urban land increased from 15.1% in 2006 to 27.5% in 2030. The total 

simulated urban area by 2030 is about 3126 km2. In terms of urban form, this scenario showed 

more clustered development around Seoul city. However, considering the growth rates and 

patterns in the region during the past decades, this is too radical a pattern of urban growth and 

looks implausible. New growth not only occurred in the removed green belt area but also in 

all other areas of the SMA. The reason seems to be due to the values of the model parameters. 

The best parameter set which was derived when the greenbelt existed, worked for the first 

scenario but not for the second one. Thus a new parameter set is desirable for this scenario, 

but this possibility not yet been attempted. 
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Table 4.3. Simulation Results by 2030 

 Total Urban 
Cells 2006 

Total Urban 
Cells 2030 

Percent 
Urban2006 

Percent  
Urban 2030 

Business as Usual 
171774 

226406 
15.1 

19.9 

Greenbelt 
Deregulation 312555 27.5 

 

A computer simulation model can act like a virtual laboratory which enables the exploration 

of various ‘what-if’ scenarios. However, consideration of a certain policy intervention which 

can abruptly alter future growth trends over the best parameter set derived from the past 

patterns can return unexpected results. As shown in the simulations in this study, the 

parameter set derived from analyzing past patterns worked with the scenario of no change but 

produced too much growth in the outcomes for the scenario based on greenbelt removal. A 

new calibration with an improved data set and close examination of why this happened could 

be a possible future extension of this simulation. Overall growth patterns and characteristics 

are given in Table 4.3 above and Figure 4.1. 

  
(a) Business as Usual                               (b) Greenbelt Removal 

Figure 4.1. Results of Urban Growth Simulation with SLEUTH at 2030 
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5. THE METRONAMICA MODEL 

5.1 Model Overview 

Metronamica is a CA based land use change model, developed and managed by the Research 

Institute for Knowledge Systems (RIKS). The model is built upon the pioneering work of 

White and Engelen (1993) and White et al (1997) who introduced a constrained and 

integrated CA urban model. The model was firstly applied to the city of Cincinnati, USA. Up 

until now, it has been applied to a large number of cities and regions around world, including 

Dublin (Ireland), Milan (Italy), Wuhan (China), Vitoria-Gasteiz (Spain) as we as many other 

places where land use change dynamics and possible consequences of alternative policy 

options have been simulated (a complete list of applications as well as the software 

specification is given in RIKS, 2011). The model was designed to study changes among 

multiple land use classes, but it is also possible to focus on the dynamics of urban and non-

urban land conversion.  

Metronamica employs the basic principles of CA modelling but more greatly relies on a 

series of innovative methods whereas SLEUTH is simpler and more traditional Three key 

characteristics distinguish the Metronamica model from conventional CA models: distance 

decay functions, integration with GIS, and constrained cell transition. Firstly, the model uses 

a larger concentric neighbourhood configuration and incorporates the notion of distance decay 

into its modelling framework to define the relationship between a cell and its neighbours. 

Conventional CA models usually use either 4-cell von Neumann or 8-cell Moore 

neighbourhood configurations. Here only immediately adjacent cells - the Moore 

neighbourhood - is the default neighbourhood and affect the centre cell’s transition. However, 

it is more realistic to assume a larger neighbourhood interaction in the case of urban models 

because the land use state is not only affected by its immediate surroundings but also by 

features in more remote locations. To this end, Metronamica defines the size of a 196-cell 

concentric neighbourhood, a radius of 8 cells from the centre cell, as a default neighbourhood 

although its size can be adjusted as a model parameter. The centre cell has a one-to-many 

relationship in the neighbourhood, and the strength of this relationship generally diminishes 

as the distance increases thus implying distance decay. The collective influence from all cells 

to the centre cell in a given neighbourhood is defined as a neighbourhood effect in the model. 

Defining the degree and magnitude of such neighbourhood effect is a matter of model 

calibration, and this will be discussed later. It is worth noting that it is this property that 
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destroys the concept of strict emergence in the model and forces comparisons to LUTI models 

in which interaction fields based on distance decay are central to the notion of the way cities 

and regions are organized. The argument is often that if CA models are relaxed in this way, 

they lose their pedagogic and informative value in terms of simulating emergence. 

Secondly, the model integrates the CA modelling framework with GIS technology. The use of 

GIS data not only makes it possible to initiate the model from within the actual geography but 

also suggests a way of taking into account the effect of various driving forces contributing to 

land use change dynamics. In addition to the interaction within the neighbourhood, 

Metronamica further integrates GIS data in order to introduce the influence of additional key 

factors: zoning, suitability, and accessibility. Consequently the model assumes that the land 

use change is jointly brought about by an interaction between four major factors: spatial 

interaction with surrounding land uses, zoning, suitability, and accessibility. On the other 

hand the integration with GIS does not necessarily only mean the use of GIS data. The model 

also incorporates GIS technologies to analyse and visualise input data as well as model 

outcomes. Thirdly, the model constrains the total amount of cell transition through the use of 

exogenous variables. In a general CA system, cell transition is only governed by local 

interactions, not by other mechanisms. This then leads to an unpredictable global level 

outcomes. However, the constrained CA model Metronamica globally regulates the 

occurrence of local patterns. In other words, the model does not sum up all possible changes 

at the local level. The model calculates a ranked score for each cell and then makes an 

allocation considering the total amount defined. The rank score, termed transition potential, is 

calculated for each cell in each time step by using the above four major factors: spatial 

relationships with surrounding land uses, and overlaid zoning, suitability, and accessibility 

information. No matter how high the transition potential, the cell’s future transition can be 

limited depending on its exogenous parameters. In this way only limited numbers of cells are 

allowed for state change in each time step. The merit of this approach is that the model can 

incorporate meaningful indicative values from various socio-economic macro models and 

data. For instance, the exogenous parameter can have meaning for macro level land use 

demand.  

Built on the above conceptual framework, the following equations best describe key 

determinants of the transition potential in detail as well as the elements of model calibration. 
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where ,i jN  represents the neighbourhood potential in a cell i for an actively changeable land 

use class j before the consideration of random perturbation effect, α is a parameter which 

decides the existence and extent of the stochastic perturbation [0, 1], and e is a random value 

taken from a Weibull distribution (1/ α, 1). ,i jN
∧

 is the neighbourhood potential after taking 

into account the random effect. Respectively in the cell i for the land use class j, ,i jS  is the 

suitability, ,i jZ  denotes the zoning, and ,i jA  stands for the accessibility. ,i jT is the resulting 

transition potential score which varies with four main factors as well as consideration of the 

random disturbance. 

 

The neighbourhood potential forms the core of the transition potential, while three other 

factors augment the CA dynamics by bringing essential factors relevant to land use change. It 

is worth investigating the neighbourhood effect in more detail. The neighbourhood effect is 

defined by: 

,
( )
( , , ) ( , )i j

b S a
N I a b d D a b
∧

∈

= ∑        (5.3) 

where S(a) represents the neighbourhood of a cell a, b is a member of S(a), and D(a, b) is the 

Euclidian distance between the cell a and b. I (a, b, d) is the influence function describing the 

style and strength of relationship between the cell a and b, which is also affected by the 

distance d between cell a and b. 

Thus the neighbourhood potential is the sum of the distance and influence function for each 

cell in the neighbourhood. The use of a fixed neighbourhood size for all cells in the study 

space and an Euclidian distance between one cell and another implies that the influence 

function is a key parameter for determining the neighbourhood potential. One land use type 

may attract or repulse another type by varying degrees. All cells in the neighbourhood are 

related to the centre cell in one way or another. In general cells in nearer locations in the 

neighbourhood will have a larger influence. However, an opposite case also exists, and such 
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an effect is not likely always to be linear. Many different types of neighbourhood effect can 

exist in the real world. Thus, identifying/defining such relationships is one important element 

of the calibration of Metronamica model. The model provides some predefined rule sets 

which describe the influence relationship between land uses in order to facilitate the 

calibration process but users need to be immersed in their own application so that unique rule 

sets can be identified. 

5.2 Input Data 

Metronamica requires five GIS based input layers: land use, suitability, zoning, accessibility, 

and the boundary. Layers such as suitability and zoning are actually value added information 

that hold composite scores. In that case, the layer requires additional input factor data. This 

study relied on the data available from the public sector rather than custom built data. 

Although there was an accuracy problem such as inconsistencies between land use maps at 

different years, generally fine scale spatial data were available for the given study area. The 

study area for this simulation is the same as for SLEUTH above, the Seoul Metropolitan Area 

(SMA). The following section describes the data set used for model calibration and simulation 

run for the study area, some of which was used above in the SLEUTH application. 

For the land use map, what is called the ‘mid resolution land cover data’ produced by 

Ministry of Environment in Korea was used. We will repeat the data specification to remind 

the reader of the nature of this data. Such land cover data is fundamentally based on the 2.5m 

resolution SPOT 5 (Système Probatoire d'Observation de la Terre 5) and KOMPSAT-2 

(Korea Multi-Purpose Satellite-2) imagery but published in vector format after refining the 

data by back-up field survey. The mid resolution land cover map originally had 22 land 

classes, but it was reclassified into 9 categories for this simulation: agriculture, forest, grass, 

barren, urban, wetland, water, recreation4, and transportation. Then each of these was 

assigned to three land categories which is a requirement of the Metronamica model. Since 

the urban growth simulation is targeted, the function category includes only one land use class, 

urban. The vacant category consists of agriculture, forest, grass, and barren. This means that 

land uses in this category are available for future urban growth. The feature category is 

composed of wetland, water, recreation, and transportation. The land uses in this group will 

                                            

4 It includes open space not subject to urban growth such as golf courses and theme parks.  
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remain static during the simulation. The land use map for 2001 was used as a seed layer for 

the calibration, and the results were compared to 2009 data. Then the 2009 map was used as a 

seed for the future simulation. 

The suitability layer mainly takes account of the terrain condition of the study area. It was 

created by jointly considering the height and slope condition. After firstly excluding the area 

over 200m, it classified the area into four categories with percent slope values. The area with 

slopes over 20 percent was set to have 0 value which excluded them from urban growth. The 

slope values from 20 to 11 and 10 to 5 were assigned to values of 2 and 1 respectively. The 

values from 5 to 0 were classified as 3, which mean the lowest topographical resistance. The 

zoning layer included the greenbelt information which is the most important spatial regulation 

in the study area. Except for the area protected by the greenbelt, future urban growth is 

permitted without further restrictions. Two different versions of greenbelt data were prepared 

in order to assume different planning scenarios. One represented the currently active greenbelt. 

The other reflected possible adjustments which are part of an ongoing planning policy agenda 

for the study area. Detailed descriptions will be dealt in the relevant scenario section.  

The accessibility layer used a comprehensive road network data for the study area. The level 

of accessibility was defined into 4 levels depending on the type of roads: highway, major road, 

minor road, and local road. In addition, the newly proposed high speed railway routes and 

stations were prepared for an alternative scenario to simulate the impact of such a new railway 

system. The details of this will be also described along with the relevant scenario. A spatial 

resolution of 50m was decided for the simulation. Generally finer scale data better describes 

geographic details but there is a trade-off between data resolution and computing resources. 

Technically the finest resolution possible for this simulation is 5m. However such fine scale 

was never likely to be practical for this study. The research initially tried to run the calibration 

with 25m resolution data which gives a grid size of 5292×6168 for whole study area. 

However as with SLEUTH the system could not be run at this level of resolution. After 

exploring alternatives, we finally decided to use 50m resolution, which gives a grid size is 

2649×3084 in this case. Details of input data are presented in Table 5.1. 

5.3 Model Calibration 

The calibration process of Metronamica can be generally broke down into four phases 

although they are not exactly sequential: 1) specification of an exogenous parameter that 

controls the total quantity of land use change, 2) definition of the neighbourhood effect which 
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details the relationship between land uses and governs the resulting local level land use 

patterns, 3) determination of the random perturbation parameter that adds a degree of 

stochasticity in land use distributions, and 4) calibration of suitability, accessibility, and 

zoning that reflects the CA based dynamics in geographic heterogeneities. By adjusting 2), 3), 

and 4), the modeller creates the transition potential score (See Equations (5.1) and (5.2) and 

then sets a cutline by specifying 1).  

 
Table 5.1. Input Data and Descriptions 

 

Layer Source Raw Data Provider Original 
Resolution 

Base 
Year 

Land Use Reclassified from Mid 
Resolution Land Cover 

Ministry of 
Environment Vector 2001, 

2009 

Suitability 

DEM Original National Geographic 
Information Institute 5m 2005 

Slope Converted from DEM National Geographic 
Information Institute 5m 2005 

Water Body Extracted from Mid 
Resolution Land Cover 

Ministry of 
Environment Vector 2009 

Z
oning 

Greenbelt Original 
Ministry of Land, 

Transport, and 
Maritime Affairs 

Vector 2008 

Greenbelt 
Adjustment Original 

Ministry of Land, 
Transport, and 

Maritime Affairs 
Vector 2010 

A
ccessibility 

Road 
Networks Original 

Ministry of Land, 
Transport, and 

Maritime Affairs 
Vector 2005 

GTXa Routes 
and Stations Original Gyeonggi-Dob Vector 2013 

Area Boundary 
Processed from 
Administrative 

Boundary 

National Statistical 
Office Vector 2005 

astands for Great Train eXpress, which is a new metropolitan high speed rail system currently 
under planning for the study area. 

bLocal government that covers most of study area except for the Seoul and Incheon city. 
 

Firstly, the calibration should start with a definition of exogenous constraints. To initiate the 

calibration, it is necessary to identify the total number of cells for each actively modelled land 

use type for the beginning and end calibration years. As a constrained CA model, the 
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Metronamica model allocates this quantity in the study space based on the transition 

potential scores. A misplacement of the global constraint would generate unrealistic results by 

allocating excessive or insufficient land use change. A simple way is to count the number of 

cells from the land use maps. However, this is a physical observation which bounds the 

calibration results to the observed quantity of land use cells; it is not a socio-economic 

prediction or projection which can be used to generate future growth. The constraints for the 

future may be simply extended from the cell counts of past land use classes. If a socio-

economic link is desired for the model, a new exogenous assumption, analysis, or projection 

of these land requirements is necessary. 

Secondly, the calibration of the neighbourhood effect is necessary. As described in Equation 

5.3, the neighbourhood effect is a function of the distance and the strength of influence 

between land uses. The function can be a simple linear, quadratic, cubic, or more complex 

function depending on the characteristic of the system under study. A modeller must decide 

the type of relationship between land uses as well as the distant dependent magnitude of the 

relationship. To simplify the calibration process, the model introduced a spline interpolation 

method. Then the specification of four control points which have fixed and parameterised X 

and Y values define the neighbourhood influence function. The first point should be on the 

(X=0, Y=neighbourhood parameter 1). The zero value of X means that it is the centre cell 

itself in the neighbourhood, and the parameterised Y value represents an inertial force to 

remain as a current cell state, i.e. a given land use type. The second point should be on the 

(X=1, Y= neighbourhood parameter 2). The distance 1 is fixed by the model, but the Y value 

depends on user definition. The third point can be at any distance between the second and 

fourth with any strength value (X= neighbourhood parameter 3, Y= neighbourhood parameter 

4). The last, fourth, point should be located in the (X=max distance on the neighbourhood, Y= 

0). This limits the spatial boundary of neighbourhood influence. From here and beyond, the 

neighbourhood effect becomes zero. By specifying the values for the above four points, a 

modeller actually defines the influence function and its curve. Though simplified by an 

interpolation method, finding a relevant neighbourhood influence function from a vacuum for 

a study area is like finding a needle in a haystack. Metronamica assumes certain common 

basic patterns can exist between land uses in a general sense. Thus the calibration of the 

neighbourhood effect in Metronamica often starts with ones used for previous studies, 

especially the one originally applied to Cincinnati, USA (White et al., 1997). Then these 

functions are finely adjusted for the given study area. 
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Thirdly, it is also necessary to determine the random disturbance parameter. The random 

factor controls three aspects of emerging land use patterns: the density gradient of land uses, 

the seeding of new clusters, and the degree of irregularity of cluster boundaries (White and 

Engelen, 2003). In sum this determines the scatteredness of land use patterns as well as the 

geometry of individual land use clusters. A sound value of this parameter helps to preserve 

the stochastic nature of the urban system. Too low or high values result in unrealistic 

symmetry or disorder. 

The final part is adjusting suitability, zoning, and accessibility factors. Physical and 

institutional suitability can have an effect on calibration since together they form the function 

of transition potential. But these are more close to description of initial (or interim) conditions, 

and thus they are less relevant to the model calibration. Accessibility is also a kind of 

condition, i.e. infrastructure. However, the influence weight is clearly matter of calibration. It 

determines the degree of land use change influenced by varying the type of road network. 

The most effective means of calibrating Metronamica is by visual map comparison, followed 

by iterative changes of parameter values and investigations on the goodness of fit. Globally 

aggregated statistical metrics are less relevant to determine the goodness of fit. The total 

amount of growth generated by the model will be always the same since it is globally 

constrained by an exogenous parameter; thus what is important here in the calibration process 

is comparing locally distributed patterns. Unfortunately an effective method to make a local 

level comparison is not yet available. Although the Map Comparison Kit can create cell 

comparison statistics such as the Kappa5, Kappa Location6, and Kappa Histogram7, these are 

not good enough to compare locally distributed spatial patterns, especially the patterns 

generated by the varying neighbourhood effect. Consequently the best resemblance is judged 

by human intuition. Then the question is when to stop the calibration and by what criteria? 

Unfortunately there is no right answer for this yet. It is the modeller’s decision.  

The Metronamica model was calibrated with reference to the above elements. The model 

was calibrated using land use data from 2001 to 2009, but as an urban growth simulation only 

the urban land use category was considered as the actively changing land use type. The total 

number of urban cells was counted for each year and used as the global constraint. The 
                                            

5 The product of Kappa Location and Kappa Histogram 
6 Counts the locations simultaneously taken by each land use category 
7 Compares the total number of cells in each land use each category 
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neighbourhood influence function for urban land use was initially defined using the default 

function in Metronamica, and then it was gradually adapted to the study area. Urban land use 

is generally irreversible, and the study area also presents such a nature. Hence the influence 

function was set to have a high inertia value with a positive agglomeration effect. A random 

coefficient of 0.6 was used in this regard. The suitability and zoning layer were not adjusted 

for the calibration. An importance weight and distance decay parameter for the accessibility 

layer was decided in a way that the model reproduces a similar road influenced growth. As 

explained before, the model calibration had to rely on the visual map comparison with 

reference to the Kappa statistics. The map comparisons were repeated until a suitable 

parameter set was found. After repeated trial and error, the final parameter set was determined. 

Detailed values are presented in Table 5.2. 

5.4 Simulation Results 

The two same scenarios, the ‘business as usual’ and the ‘greenbelt deregulation’, policy 

instruments are applied using the simulations with Metronamica. The model is run from 

2001 to 2030 for each scenario. The simulation from 2001 to 2009 is used as the calibration 

period. Then the model is run up until 2030 with different policy scenarios after the 

calibration. However, the calibration of local level dynamics does not yield a value for the 

global constraint. For future simulation, a new exogenous assumption, analysis, or projection 

of the land demand is necessary. In order to make this logical, the macro level urban land 

demand for this simulation was derived from projected population growth for the study area. 

From the past trends of population and urban growth and the projected population growth 

published by the National Statistical Agency of Korea, the total demand for urban land in 

2030 has been extrapolated accordingly. It is assumed that approximately 17.5% of the SMA 

would be the urban built-up area by 2030 (See Table 5.3).  

Thus with regard to the total amount urban growth, there is no difference between the 

scenarios because this growth is exogenously defined with reference to projected population 

in this simulation. As a result, the total amount of urban land conversion at the end of 

simulation year is same for the two scenarios. Although the number of urban patches and 

average patch size show a subtle difference between the scenarios, the urban area as a whole 

is almost identical across the scenarios. The SMA continues to grow and consume agricultural 

land as expected. Urban growth would occur in a dispersed way and continue to cause a loss 
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of open space, and the number of urban patches and their degree of dispersion would also 

continue to increase. 

Table 5.2. Calibration Results 

 Global 
Constraint 

Neighbourhood 
Effecta 

Random 
Coefficient Accessibility Weight 

Value 

Year 

2009 
 

Year 
2030 

590275 

 
 

670309 

Point 1 0, 10000 

0.6 

Highway 10, 0.25 

Point 2 1, 40 Main 10, 1 

Point 3 2, 12 Minor 10, 1 

Point 4 8, 0 Local 10, 0.5 

a urban to urban interaction 

 
Table 5.3. Configuration of the Total Urban Built-up Area by Scenario, 2009-2030 

LandscapeMetrics 

Scenario 

Total 
Urban Cell 

Count 

UrbanBuilt-
upArea 
(km2) 

Percent 
Number of 

Urban 
Patch 

Mean 
Urban 

Patch Size 
(hectare) 

Business as Usual 
796002 1990.0 17.5 

28970 6.87 

Greenbelt 
Deregulation 28976 6.87 

 

On the other hand, Figure 5.2 and Table 5.4 highlight varied spatial distributions of different 

urban development scenarios and compare varying degrees of sprawl. A comparison of total 

new urban growth is made at a distance between 0-50km from the centre of Seoul and this 

more clearly exposes the differences8. Having the same amount of total urban growth, the 

scenario 1 (Business as Usual) has lower amount of new growth within the 50km circle. 

Scenario 2 (Greenbelt Deregulation) shows more new development than the scenario 1 in the 

same range.  

                                            

8 The distance was measured from the location of Seoul City Hall, which is generally 
considered as the centre of Central Business District (CBD) in Seoul. 
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Figure 5.2.Comparison of New Urban Growth at 2030 

 
Note: Above buffer rings are created at measured distances from Seoul City Hall. Each ring 

has a radius of 10km, 30km, and 50km respectively. 
 
 

Table 5.4.Comparison of the New Urban Growth by Scenario & Distance, 2009-2030 

Landscape 
Metrics 

Scenario 

Within 10Km Between 10-30Km Between 30-
50Km Total(0-50Km) 

Cell 
Count 

Area 
(km2) 

Cell 
Count 

Area 
(km2) 

Cell 
Count 

Area 
(km2) 

Cell 
Count 

Area 
(km2) 

Business as 
Usual 1947 4.9 28900 72.3 36322 90.8 67169 167.9 

Greenbelt 
Deregulation 1565 3.9 40057 100.1 32046 80.1 73668 184.2 

Note: Areas are calculated from the cell count (Cell size = 50M x 50M). The figures present 
the different outcome states between scenarios but should not be regarded as an accurate 

prediction of future growth amount. 

The result of these simulations reveals a paradox of greenbelt deregulation. As assumed and 

simulated, urban growth tends not to stop as long as the population and economy grow. 

Spontaneous growth without any further investment or regulation is likely to result in 

continuing leapfrog development affecting agricultural cities at further, more distant locations 

in the SMA. Deregulation of the greenbelt could prevent spontaneous growth in further parts 

of the SMA but it would harm previously protected areas near Seoul city. 
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6 DISCUSSION 

6.1 Use of the Generic Model: Fulfilling Data Requirements 

Generic urban models are pre-packed and ready to use for a wide variety of study areas 

without further development or modification. Fulfilling specified data requirements is a first 

step for successful implementation of generic models. In the use of dynamic CA models, such 

data requirements are imposed not only on the spatial dimension but also on the temporal one. 

CA urban models tend not to demand comprehensive spatial and/or aspatial data compared to 

the different styles of LUTI urban model. As seen in the SLEUTH and Metronamica models, 

such models can be run with less than several spatial input layers but generate future urban 

patterns even without the use of complex socio-economic data. Both SLEUTH and 

Metronamica do not require historic data for future simulations can be run from a single time 

point. 

However, as a dynamic model, these models require historic spatial data to derive the best fit 

model parameters for future simulation and to ultimately bind the future simulation to the 

empirical ground. SLEUTH requires more intensive historic data than Metronamica does. 

However, this does not necessarily simply give a comparative advantage to a certain model. 

This is inherited from their different approaches to model calibration which will be discussed 

in the next section. Nonetheless, this study faced a major challenge with attaining historic 

spatial data, especially for the transportation network. Although dedicated custom data 

building was a possible option, this study relied on the data available from public sector 

which is the usual situation in reasonably well developed counties and those like Korea that 

have rapidly developed in recent years. This is necessary so that we can conduct urban 

simulation with the best available data.  

Every model has a unique structure, hence it will have different data requirements. Whatever 

the requirements are, the model presents its own behaviour and outcomes based on such 

structure and requirements. Thus it is hard to evaluate a model simply with the data 

requirement. However, it is one thing that the urban modelling community should collectively 

think about. As Klosterman (2008) has pointed out, data available to planning practice tends 

to be inadequate but at the same time it is likely to be the best available data. Urban models 

should accommodate themselves to such conditions. In this way, urban models can be used 

not only by well-funded organisations but also by data-poor agencies and communities. 
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6.2 Calibration of the CA Model: Data Centred vs. Knowledge Oriented Approaches 

Another key to the use of generic model is model calibration. Although model calibration is a 

necessity for any model if a practical application is aimed for, generic models usually have 

pre-defined calibration methods. This research has witnessed two types of model calibration: 

using the systematic quantitative method of the SLEUTH model and the qualitative approach 

of the Metronamica model. The former uses empirical data to derive the model parameters 

while the latter more relies on the area specific knowledge for model calibration.  

The data oriented calibration method of SLEUTH enables a semi automatic calibration 

process. Although the determination of the best fit parameter set is ultimately made by the 

modeller, the model performs all the necessary computations and sums up the statistical 

results to compare simulation outcomes and actual data. As a result, SLEUTH requires 

multiple years of historic data for urban and transportation layers. At the same time, while a 

quantitative calibration method provides an objective measure to evaluate the goodness of fit 

of simulation results, the method is still limited in measuring the simulation outcomes at 

aggregate and global level. This means that the best parameter set determined by considering 

such measurements has a firm statistical representativeness. However, the simulated future 

from those parameters is an extension from the aggregated and averaged model outcomes, not 

from local peculiarities. Unfortunately, quantitative individual cell level comparison is not 

well developed in this field. 

One the other hand, the calibration of Metronamica relies more on the study area specific 

knowledge than on the data itself. Although repetitive visual comparisons are necessary, this 

enables the modeller to conduct in-depth investigation of local patterns. Such characteristics 

of model calibration are basically due to a complex nature of the model structure and the 

difficulty of estimating different strata of parameter values from the single observed data of 

the land use map. An automatic extraction has been attempted (Straatman et al., 2004), but so 

far no single method has replaced a knowledge oriented calibration process specific to the 

Metronamica model. The pitfall of subjectivity of course does exist in this process. However, 

this does not necessarily mean such calibrations and hence the simulation results are 

unreliable. Compared to an automatic calibration based on statistical techniques, qualitative 

calibration has clear merit in bringing knowledge on spatial forms and pattern specific to the 

modelled area. Indeed this is the de facto method that enables the close examination of the 

local level patterns since no quantitative metrics can yet fully replace such a method. 
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The quantitative estimation of model parameters from data is more general and common to 

scientific models. However, it should be noted that such effort is bounded by the availability 

of data as well as the quality of data. On the other hand, knowledge oriented methods are less 

dependent on the data at least in the temporal dimension as seen in these simulations. While 

this can be a weakness, this would give a model a comparative advantage in supporting 

planning policies in data-poor conditions. 

6.3 Beyond Behavioural Realism 

One of the main strengths of CA is simplicity in model development. As demonstrated in 

Figures 2.1 to 2.3, a number of simple rules can generate certain urban growth patterns at a 

global scale. Since such rules are typically constructed on an ad hoc basis, model building is 

possible without the use of tested theory. Established generic models such as SLEUTH and 

Metronamica add more diverse elements to reproduce real urban systems, but they also 

greatly rely on such ad hoc model development strategy.  

Not confined to the established available theories, CA urban models have answered what 

theory based models could not answer – realistic reproduction of urban systems without 

reliance on unrealistic assumptions. Thus the main trends of CA urban models have been 

centred on the pursuit of behavioural realism. The transition rules which form the core of such 

models mimic the behaviour of real urban systems based on an intuitive understanding of 

such systems. Then the models are calibrated over the observed land use data and used for 

practical applications, but the transition rules which generated the simulation results tend not 

to be examined further Moreover, the use of the random algorithm is almost essential to 

maximise such  realism as we have seen the simulations in this research. As a result, although 

CA urban models have been successfully applied to the study of complex urban systems, they 

lack explanatory power and have not yet effectively yielded theories about how urban systems 

evolve. 

Recently emerging research efforts to infuse a more rigid explanation of urban systems into 

CA or ABM (agent based model) is slowly pointing to a new synthesis in urban modelling 

(Brown and Robinson, 2006, Caruso et al., 2007, Filatova et al., 2009). Such approaches 

usually introduce micro economic theories to define cell transition rules and/or agent 

behaviour. This type of approach is not yet fully developed, but this new trend implies a need 

for theory-oriented, disaggregate, and dynamic urban models. In this way, CA urban models 

could provide much more realistic behavioural simulations of how urban structures emerge, 
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evolve and regenerate themselves in such a way that they are useful and informative for 

enhancing policy support.  

 

REFERENCES 

 

BATTY, M. (2004) Dissecting the streams of planning history: Technology versus policy 
through models. Environment and Planning B: Planning and Design, 31, 326-330. 

BATTY, M. (2005) Cities and Complexity: Understanding Cities with Cellular Automata, 
Agent-Based Models, and Fractals, Cambridge, Massachusetts, The MIT Press. 

BATTY, M. (2009) Urban modelling. In KITCHIN, R. & THRIFT, N. (Eds.) International 
Encyclopaedia of Human Geography. Amsterdam, Elsevier Science. 

BATTY, M., and LONGLEY, P. A. (1994) Fractal Cities: A Geometry of Form and Function, 
San Diego and London, Academic Press, available online at www.fractalcities.org 

BROWN, D. G. & ROBINSON, D. T. (2006) Effects of heterogeneity in residential 
preferences on an agent-based model of urban sprawl. Ecology and Society, 11. 

CARUSO, G., PEETERS, D., CAVAILH, J. & ROUNSEVELL, M. (2007) Spatial 
configurations in a periurban city. A cellular automata-based microeconomic model. 
Regional Science and Urban Economics, 37, 542-567. 

CLARKE, K. (2008) A Decade of cellular urban modelling with SLEUTH: Unresolved 
issues and problems. In BRAIL, R. K. (Ed.) Planning Support Systems for Cities and 
Regions. Cambridge, Massachusetts, Lincoln Institute of Land Policy. 

CLARKE, K., HOPPEN, S. & GAYDOS, L. (1997) A self-modifying cellular automaton 
model of historical urbanization in the San Francisco Bay area. Environment and 
Planning B: Planning and Design, 24, 247-261. 

COUCLELIS, H. (1985) Cellular worlds: a framework for modelling micro-macro dynamics. 
Environment and Planning A, 17, 585-596. 

DIETZEL, C. & CLARKE, K. (2007) Toward optimal calibration of the SLEUTH land use 
change model. Transactions in GIS, 11, 29-45. 

FILATOVA, T., PARKER, D. & VEEN, A. V. D. (2009) Agent-based urban land markets: 
Agent's pricing behaviour, land prices and urban land use change. Journal of Artificial 
Societies and Social Simulation, 12. 

IACONO, M., LEVINSON, D. & EL-GENEIDY, A. (2008) Models of transportation and 
land use change: A guide to the territory. Journal of Planning Literature, 22, 323-340. 

JANTZ, C. A., GOETZ, S. J., DONATO, D. & CLAGGETT, P. (2010) Designing and 
implementing a regional urban modelling system using the SLEUTH cellular urban 
model. Computers, Environment and Urban Systems, 34, 1-16. 



   38 

KLOSTERMAN, R. (2008) A new tool for a new planning: The What if?TM planning support 
system. In BRAIL, R. K. (Ed.) Planning Support Systems for Cities and Regions. 
Cambridge, Massachusetts, Lincoln Institute of Land Policy. 

RIKS (2011) Metronamica, http://www.metronamica.nl/ Research Institute for Knowledge 
Systems, P.O. Box 463, 6200 AL Maastricht, The Netherlands 

STRAATMAN, B., WHITE, R. & ENGELEN, G. (2004) Towards an automatic calibration 
procedure for constrained cellular automata. Computers, Environment and Urban 
Systems, 28, 149-170. 

TOBLER, W. R. (1970) A computer movie simulating population growth in the Detroit 
region. Economic Geography, 42, 234-240. 

TOBLER, W. (1979) Cellular Geography. In GALE, S. & OLSSEN, G. (Eds.) Philosophy in 
Geography. Dordrecht, Reidel. 

WHITE, R. & ENGELEN, G. (1993) Cellular automata and fractal urban form. Environment 
and Planning A, 25, 1175-1199. 

WHITE, R. & ENGELEN, G. (1997) Cellular automata as the basis of integrated dynamic 
regional modelling. Environment and Planning B: Planning and Design, 24, 235-246. 

WHITE, R. & ENGELEN, G. (2003) Kalibratieprocdure: A calibration procedure for 
constrained large neighbourhood cellular automata based land use models. 13th 
European Colloquium on Theoretical and Quantitative Geography. Lucca, Italy,  

WHITE, R., ENGELEN, G. & ULJEE, I. (1997) The use of constrained cellular automata for 
high-resolution modelling of urban land-use dynamics. Environment and Planning B: 
Planning and Design, 24, 323-343.  


	176 cover
	DonghanKim-BATTY-Working-Paper-FINAL-Final.pdf

